Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Двигатели внутреннего сгорания

Поиск

В начале XX в. начали появляться судовые двигатели внутреннего сгорания (ДВС). Первое в мире датское судно «Зеландия» с дизельной установкой, построенное в 1912 г., имело два дизеля мощностью по 147,2 кВт. Эти ДВС приводили в движение непосредственно по одному гребному винту. После этого ДВС стали совершенствоваться довольно быстро. Процесс особенно ускорился после второй мировой войны. В настоящее время основную часть устанавливаемых на судах главных энергетических установок составляют ДВС. Паротурбинные установки имеют только суда с мощностью двигателей от 14700 до 22 100 кВт. В некоторых странах по традиции, а также исходя из имеющихся производственных мощностей турбинный двигатель применяют и на судах меньшей мощности. Это особенно характерно для судов торгового флота США.

Дизельная энергетическая установка состоит из
одного или нескольких основных двигателей, а также из обслуживающих их механизмов.
В зависимости от способа осуществления рабочего цикла ДВС разделяют на
четырехтактные и двухтактные
Дополнительное увеличение мощности достигается с помощью наддува.

Существует другой принцип разделения ДВС - по частоте вращения. Малооборотные дизели с частотой вращения 100-150 об/мин непосредственно приводят в движение судовой движитель. Среднеоборотными называют ДВС с частотой вращения 300—600 об/мин. Они приводят в движение судовой движитель через редуктор.

 
 

Приблизительно до конца 60-х гг. на судах устанавливали реверсивные главные двигатели, позволяющие судну осуществлять задний ход. Только при малых мощностях для реверса ДВС использовали специальные устройства (реверсредукторы), дающие возможность маневрирования. В 60-х гг. одновременно с появлением винтов регулируемого шага начали в качестве главного двигателя применять нереверсивные ДВС вначале на малых судах, траулерах и буксирах, а затем и на больших торговых судах. За счет этого конструкция двигателей упростилась. Рис. 13. Машинное отделение (дизель со вспомогательными механизмами).

Кроме главного двигателя предусмотрены еще 2 вспомогательных, которые приводят во вращение генераторы. Для обслуживания главного и вспомогательных двигателей используются вспомогательные механизмы и системы, а также система трубопроводов и клапанов.

Топливная система предназначена
для подачи топлива из цистерн к двигателю.

При этом для уменьшения вязкости топливо подогревается и освобождается в сепараторах и фильтрах от жидких и твердых примесей.

Система смазки служит для
прокачивания смазочного масла через двигатель с целью уменьшения трения между трущимися
поверхностями, а также для отвода части полученного от двигателя тепла и очистки масла.
Система охлаждения предусмотрена
для отвода от двигателя тепла, которое проникает в основном через стенки цилиндра
и возникает
во время сжигания топлива, а также для охлаждения циркулирующего смазочного масла.
Эта система состоит из
насосов для пресной и морской воды и охладителей воды и масла.
Пусковая установка, включающая в себя компрессоры, резервуары сжатого воздуха, а также трубопроводы и клапаны, служит для
пуска главного и вспомогательных двигателей.
 

Наряду с указанными выше вспомогательными системами главного и вспомогательных двигателей в машинном отделении находятся и другие судовые механизмы общего назначения. Принцип действия четырехтактного ДВС показан на рис.14.

Рис. 14. Принцип действия четырехтактного дизеля.

В четырехтактном двигателе рабочий цикл осуществляется за два поворота коленчатого вала, т. е. за четыре хода поршня. Механическая работа совершается только за время одного такта, три остальных служат для подготовки. При первом такте поршень движется в направлении коленчатого вала. Под воздействием возникающего при этом разрежения воздух через открытый всасывающий клапан устремляется в цилиндр. В дизеле без наддува давление всасываемого воздуха равно атмосферному, в дизеле с наддувом к цилиндру подводится уже предварительно сжатый воздух. Во время второго такта при закрытых всасывающих клапанах предварительно поступивший воздух перед поршнем подвергается сжатию, за счет чего повышаются температура и давление. Топливоподкачивающий насос, привод которого согласован с движением соответствующего поршня, повышает давление топлива. При достижении давления 19,62—39,24 МПа топливо через форсунку впрыскивается в цилиндр, в котором у дизелей без наддува давление сжатого воздуха составляет 2,94-3,43 МПа и температура 550—600°С, а у дизелей с наддувом соответственно 3,92-4,91 МПа и 600-700°С. Топливо впрыскивается незадолго до того момента, когда поршень достигнет верхнего положения. Впрыснутое и тщательно распыленное топливо в сжатом воздухе нагревается, испаряется и вместе с воздухом образует горячую самовоспламеняющуюся смесь. Третий такт является рабочим. Во время процесса сгорания топлива образуются горячие газы, которые вызывают увеличение давления над поршнем в дизелях без наддува от 4,41 до 5,4 МПа, а в дизелях с наддувом — от 5,89 до 7,85 МПа. Под давлением силы, возникающей за счет давления газов, поршень движется вниз, газы расширяются и производят при этом механическую работу. Во время четвертого такта открывается выпускной клапан и отработавшие газы выходят наружу. Четырехтактные судовые ДВС изготовляются как многоцилиндровые двигатели. Они устроены так, что рабочие такты равномерно распределяются по отдельным цилиндрам. В рабочий цикл двухтактного дизеля входят два такта, или один оборот коленчатого вала. Первый такт, называемый сжатием, начинается, когда поршень находится в нижнем положении. Впускные окна в боковых стенках цилиндра открыты. Через эти окна проходит предварительно сжатый продувочный воздух, давление которого должно быть выше давления находящихся в цилиндре расширившихся газов. Одновременно продувочный воздух через открытый выпускной клапан вытесняет отработавшие газы из цилиндра и наполняет цилиндр новой дозой. Когда впускные окна закрываются поршнем, к цилиндру воздух не подводится. Так как одновременно закрывается и выпускной клапан, воздух в цилиндре сжимается. Этот процесс не показан на рисунке. Впрыскивание топлива и воспламенение происходит точно так же, как и в четырехтактном ДВС. Во время второго такта - рабочего (или расширения) — расширяющиеся газы совершают механическую работу. В конце этого такта впускные окна открываются поршнем и процесс продувки цилиндра начинается снова. Отработавшие газы могут выйти из цилиндра через внешний клапан, либо через управляемые поршнем выпускные окна.

Рис. 15. Принцип действия двухтактного дизеля.  

Рис. 16. Принцип действия газотурбинного нагнетателя.
1 — турбина, работающая на отработавших газах; 2 — отработавшие газы; 3 — свежий воздух; 4 — компрессор; 5 — коленчатый вал; 6 — цилиндр; 7 — поршень.

Под наддувом дизельного двигателя понимают подачу к цилиндрам большего количества воздуха, чем требуется для заполнения всего цилиндра при такте всасывания. Цель наддува заключается в том, чтобы

способствовать сжиганию наибольшего количества топлива за один рабочий цикл.

Это означает повышение мощности двигателя без увеличения его размеров (диаметра, хода и числа цилиндров), а также частоты вращения. Наддув можно осуществлять за счет предварительного сжатия воздуха перед цилиндром. Во всех выпускаемых четырехтактных судовых ДВС предварительное сжатие воздуха происходит с помощью центробежного компрессора, который приводится в действие газовой турбиной, работающей на отработавших газах дизеля. Принцип действия компрессора показан на рис. 16. Поступивший из компрессора воздух проходит через фильтры. После открытия впускного клапана сжатый воздух подается через воздушный коллектор к соответствующим цилиндрам. В двухтактных дизелях предварительное сжатие воздуха происходит в центробежных компрессорах, в пространстве под поршнем, а также в поршневых компрессорах, приводимых в действие двигателем. Давление наддувочного воздуха достигает 0,14—0,25 МПа. На рисунке ниже показан в разрезе главный малооборотный дизель с наддувом.

2-хтактные дизели изготовляют в виде многоцилиндровых рядных двигателей с 10—12 цилиндрами. Диаметр цилиндров больших двухтактных дизелей достигает 1000 мм, ход — 1500—2000 мм. Мощность цилиндра при общей мощности двигателя более 29 440 кВт составляет от 2900 до 3700 кВт. В связи с этим ДВС можно использовать в качестве главных двигателей и на крупных судах. Двухтактные дизели имеют очень большие размеры и массу. Их удельная масса достигает 40—55 кг/кВт. При мощности, например 14 720 кВт, масса составляет 600—800 т.

4-хтактные дизели применяют на судах либо в составе дизель-генераторных установок, либо в качестве главного двигателя в многовальных энергетических установках (по одному дизелю на один движитель) и, соответственно, в многодвигательных установках для одного движителя. Применение среднеоборотных дизелей в качестве главного двигателя дает следующие преимущества:

— увеличение надежности (при выходе из строя одного двигателя остальные продолжают работать);
 
— уменьшение габаритов и собственной массы деталей (например, клапанов, поршней, кривошипных механизмов, подшипников и т. д.);
 
— уменьшение удельной массы, которая в зависимости от мощности составляет от 14 до 35 кг/кВт (для мощностей около 2200 кВт).
Рис. 17. Принцип действия малооборотного двухтактного дизеля а — предварительно сжатый воздух вытесняет отработавшие газы из цилиндра
b — одновременно происходит сжатие и всасывание;
с — рабочий такт и предварительное сжатие;
d — предварительно сжатый воздух вытесняет отработавшие газы из цилиндра двигателя без выходного клапана.
Среднеоборотные дизели используются также в дизель-электрических энергетических установках в качестве главного двигателя. . 6. ГАЗОТУРБИННЫЕ ДВИГАТЕЛИ В 1950-х гг. на судах начали применять новый вид главного двигателя — газовую турбину. По принципу действия газовая турбина аналогична паровой. Рабочей средой в них служат газы, образующиеся в результате сжигания жидкого топлива. Газовые турбины используют, в качестве приводов для центробежных компрессоров в турбонаддувочных агрегатах ДВС. В газовых турбинах газы образуются в особой камере сгорания. Так как температура газов очень высока, что влияет на срок службы турбин, в камеру сгорания необходимо подавать намного больше воздуха, чем требуется для сжигания топлива. Из-за избытка воздуха температура рабочих газов понижается до 700—800°С. На рис. 20 дана схема газовой турбины с так называемым открытым циклом, когда воздух забирается из атмосферы и отработавшие газы также выбрасываются в атмосферу. Тринадцати ступенчатый осевой компрессор приводится в действие специальной двухступенчатой газовой турбиной. Сжатый до давления около 0,4 МПа воздух подается в камеру сгорания, служащую для получения и последующего охлаждения газов. Отработавшие газы проходят через турбину компрессорного двигателя; при этом их давление понижается до 0,17 МПа, а температура - с 750 до 580°С. Вторая - тоже двухступенчатая - газовая турбина является собственно рабочей турбиной, которая через редукторную передачу приводит в движение либо судовой движитель, либо генератор. В судовых газовых турбинах довольно часто применяются поршневые компрессоры, так называемые свободнопоршневые генераторы. Газотурбинные двигатели устанавливают в основном на кораблях военно-морского флота. На торговых судах они не оправдали себя; в настоящее время газовые турбины используют только на небольшом количестве судов.
Рис. 18
1 — наддувочный агрегат;
2 — охладитель наддувочного воздуха;
3 — трубопровод отработавших газов;
4 — трубопровод наддувочного воздуха;
5 — трубопровод охлаждающей воды;
6 — масляный трубопровод;
7 — топливный трубопровод;
8— распределительный вал;
9 — приводное колесо;
10 — промежуточные шестерни;
11 — приводное колесо коленчатого вала;
12 — коленчатый вал;
13 — шатун;
14 — поршень;
15 — цилиндровая гильза;
16 — камера охлаждающей воды;
17 — крышка цилиндра;
18 — выпускной клапан;
19 — впускной клапан
20 — топливный клапан;
21 — штанга
22 — топливный насос
23 — маслораэбрызгивающее кольцо;
24 — масляная ванна картера;
25 — станина двигателя;
26 — блок цилиндров.

.
Причинами понизившегося интереса к этому виду двигателей являются малый термический КПД, довольно большой расход топлива и высокая рабочая температура, требующая применения высокопрочных и дорогих материалов. К преимуществам газотурбинного двигателя относятся малые габаритные размеры по сравнению с достигаемой мощностью и небольшая собственная масса. Газовые турбины можно также использовать в качестве главных и вспомогательных двигателей на судах на подводных крыльях и воздушной подушке.

рис. 20.Принцип действия газовой турбины. 1 — осевой компрессор; 2 — форсунка; 3 — камера сгорания; 4 — компрессорная турбина; 5 — рабочая турбина; 6 — редуктор; 7 — пусковой мотор; в — сжатый воздух; 9 — газоотводная труба; 10 — отработавшие газы.

ЭЛЕКТРИЧЕСКАЯ ПЕРЕДАЧА

В зависимости от типа главного двигателя различают дизель- и турбоэлектрические энергетические установки. В дизель-электрической энергетической установке генераторы приводятся в действие ДВС; в корме судна установлены электродвигатели, которые в большинстве случаев непосредственно соединены с судовыми движителями. Эти двигатели позволяют использовать нереверсивные судовые высоко- и среднеоборотные дизели и обеспечивают гибкую работу всего блока, так как дизели, генераторы и электродвигатели можно комбинировать любым образом. Кроме того, имеется возможность наиболее целесообразного размещения двигателей в средней и носовой части судна, а также достижения наиболее экономичной работы приводных двигателей при различных режимах движения. Дизель-электрические установки являются наиболее распространенными. Чаще всего их применяют на специальных судах, таких как ледоколы, рыболовные буксиры, противопожарные, плавучие краны, землечерпательные снаряды, паромы. На рисунке ниже показаны схемы дизель-электрических энергетических установок: ледокола с двумя и четырьмя пропульсивными электродвигателями в корме и для буксиров. Из рисунка видно, что передача мощности от первичного к пропульсивному двигателю иногда может осуществляться через механический редуктор.

Рис. 21. Схематическое изображение дизель-электрической энергетической установки:
а — ледокола; b — рыболовного судна; с — с двухдвигательным приводом (с двигателями разной мощности); d — буксира.
1 — электродвигатель; 2 — дизель; 3 — генератор.

Рис. 22. Схема турбоэлектрической энергетической установки. 1 — парогенератор; 2 — турбина; 3 — генератор; 4 — электродвигатель.  

Дизель-электрические энергетические установки обычно применяют мощностью до 4000 кВт. Использование двигателей большей мощности характерно только для ледоколов. Так, например, американский ледокол «Глэсье» имеет два гребных винта, которые приводятся во вращение двумя электродвигателями по 6200 кВт каждый. Наибольшую общую мощность дизель-электрической энергетической установки имеет ледокол «Москва». На нем установлено четыре электродвигателя по 4000 кВт каждый. Изображенные на нижнем рисунке турбоэлектрические энергетические установки встречаются намного реже.



Поделиться:


Последнее изменение этой страницы: 2016-12-10; просмотров: 734; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.139.98.0 (0.012 с.)