Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Атомная энергетическая установкаСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Рис. 23. Конструкция и принцип действия ядерного реактора.
Ядерное топливо содержит делящийся материал, как правило, уран или плутоний. При расщеплении ядер атомов, которые распадаются на так называемые фрагменты - или на свободные нейтроны высоких энергий, освобождается очень много энергии. Для уменьшения высокой энергии нейтронов служит замедлитель: графит, бериллий или вода. Для того чтобы свести к минимуму возможность потери нейтронов, устанавливают отражатель. Он состоит в основном из бериллия или графита. 1 — стальной корпус; 2 — замедлитель; 3 — отражатель; 4 — защита; 5 — тепловыделяющие элементы; 6 — вход теплоносителя; 7 — выход теплоносителя; Регулирующие стержни. Во избежание слишком сильного потока нейтронов в реакторе на соответствующей глубине устанавливают регулирующие стержни из поглощающих нейтроны материалов (кадмия, бора, индия). Энергообмен в реакторе происходит с помощью теплоносителей, воды, органических жидкостей, сплавов из легкоплавких металлов и т. д. В настоящее время на судах применяют, как правило, реакторы, охлаждаемые водой под давлением. Схема машинного отделения судна с реактором такого типа дана на рис. 24. Рис. 24. Схема атомной энергетической установки с реактором, охлаждаемым водой под давлением.
Эта установка имеет два контура циркуляции. Первый контур - циркуляция воды под высоким давлением. Вода первого контура служит одновременно теплоносителем ядерного реактора и имеет давление приблизительно от 5,8 до 9,8 МПа. Она протекает через реактор и нагревается, например на судах «Отто Хан» (ФРГ) и «Мутсу» (Япония), до 278°С. При этом давление воды противодействует испарению. Горячая вода первого контура, протекая через нагревательный змеевик, отдает свое тепло парогенератору, затем она снова возвращается к реактору. К парогенератору из второго контура низкого давления подается конденсат. Нагреваемая в парогенераторе вода испаряется. Этот пар с относительно низким давлением (например, на американском судне «Саванна» оно составляет 3,14 МПа) служит для питания турбин, которые через редуктор приводят во вращение гребной винт. Первый (первичный) экран окружает реактор и изготовляется из свинцовых пластин с полиэтиленовым покрытием и из бетона. Вторичный экран окружает парогенератор и заключает внутри себя весь первый контур высокого давления. Этот экран в основном изготовляют из бетона толщиной от 500 мм («Отто Хан») до 1095 мм («Мутсу»), а также из свинцовых пластин толщиной 200 мал и полиэтилена толщиной 100 мм. Оба экрана требуют много места и имеют очень большую массу. Например, первичный экран на судне «Саванна» весит 665 т, а вторичный — 2400 т. Наличие таких экранов является большим недостатком атомных энергетических установок.
Рис. 25. Атомная энергетическая установка на морском судне. Другим, еще более существенным недостатком, является, несмотря на все защитные меры, опасность заражения окружающей среды как во время нормального функционирования энергетической установки вследствие отходов использованного топлива, выпуска трюмной воды из реакторного отсека и т. д., так и во время случайных аварий судна и атомной энергетической установки.
СУДОВЫЕ ПЕРЕДАЧИ МОЩНОСТИ К важнейшим составным частям судовых энергетических установок относятся элементы передачи мощности. Под этим понимаются все элементы, участвующие в передаче крутящего момента от коленчатого вала или ротора в турбинах к гребному винту. Типовая дизельная энергетическая установка с двумя среднеоборотными дизелями показана на рисунке. Она включает в себя муфты, одноступенчатый редуктор, валопровод и гребной винт. В энергетических установках с малооборотными дизелями редуктор отсутствует, в турбинных и энергетических установках с высокооборотными дизелями ставят двух- и трехступенчатые редукторы. В дизель- и турбоэлектрических энергетических установках предусмотрены электродвигатели.
Работа гидродинамических муфт основывается на гидравлическом принципе, схематично показанном на рис. с. Это можно представить себе так: насос, приводимый в движение двигателем, отсасывает жидкость из резервуара, и нагнетает ее в турбину. Жидкость под определенным давлением протекает через лопатки турбины, приводя ее в движение, и затем течет обратно в резервуар. При одинаковых размерах роторов насоса и турбины агрегат работает как гидравлическая муфта, при различных — он превращается в гидротрансформаторную передачу, позволяющую изменять частоту вращения ведомого вала.
В судовых главных двигателях довольно часто применяют также электромагнитные индукционные скользящие муфты. Принцип действия подобной муфты состоит в использовании вращающего момента, возникающего вследствие воздействия вращающегося магнитного поля на индукционные токи. Внутренняя часть муфты расположена на ведущем вале. Обмотки полюсов через щетки и контактные кольца питаются постоянным током. Внешняя часть муфты имеет обмотку в виде беличьей клетки. Когда внешняя часть, приводимая в движение двигателем через вал, начинает вращаться и возбуждается, она вместе с валом, связанным с ней и ведущим, например, к редуктору, попадает в область вращения магнитного поля. За счет этого в обмотке типа беличьей клетки этой части муфты возникают индукционные токи. Эти токи, взаимодействуя с силовыми линиями магнитного поля, обусловливают возникновение момента вращения, вследствие чего внешняя часть муфты начинает вращаться вместе с внутренней. Таким образом вращение, мощность и момент вращения передаются от двигателя к валу редуктора. Рис. 25. Судовые муфты.
Редуктор главного двигателя должен передавать момент вращения и так изменять его частоту вращения, чтобы она имела оптимальную величину, необходимую для нормальной работы гребного винта. На судах чаще всего применяют механические редукторы, состоящие из зубчатых колес. С введением планетарного редуктора появилась возможность значительно уменьшить размеры и общую массу. В последнее время на новых судах все чаще используют планетарные редукторы в энергетических установках со среднеоборотными дизелями, газовыми или паровыми турбинами.
Валопровод соединяет приводной двигатель с гребным винтом. Гребной вал, который в зависимости от расположения машинного отделения на судне может состоять из одной или нескольких соединенных через глухие муфты частей, должен передавать момент вращения двигателя на гребной винт. Гребной вал опирается на радиальные подшипники. Концевая часть проходит в уплотнительном сальнике, который предохраняет туннель гребного вала от попадания морской воды. На конусообразной концевой части гребного вала закреплен гребной винт (рис. а). Осевое давление, действующее со стороны гребного винта и передаваемое дальше через вал, воспринимается упорным подшипником. Принцип действия упорного подшипника изображен на рис. d-е. Такой подшипник старого типа состоит из взаимодействующего с опорными поверхностями гребня давления; опорные поверхности залиты металлом. На переднем ходу функционирует одна поверхность гребня давления, на заднем — другая. Гребной винт в настоящее время является почти единственным типом движителя. Он состоит из нескольких лопастей, радиально укрепленных на ступице. Во время вращения гребного винта вокруг своей оси на лопастях возникает сила давления, которая в конечном итоге обусловливает движение судна. Характерной величиной гребного винта является шаг. Его теоретическое значение, т. е. без учета скольжения, зависит от угла атаки лопасти гребного винта. Для достижения хорошего взаимодействия между главным двигателем и гребным винтом необходимо, чтобы параметры и особенно шаг винта имели определенные значения. Оптимальное взаимодействие будет достигнуто лишь при определенном состоянии нагрузки судна и при определенных погодных условиях (ветер, волнение и т. д.). Если эти значения отклоняются от заданных, то взаимодействие двигателя и гребного винта не приносит результата, заложенного в проекте. На практике это означает, что взаимодействие двигателя и относящегося к нему гребного винта будет наиболее эффективным, например, при полной нагрузке судна и при хорошей погоде. Рис. 27. Валопровод: а — общий вид; b — полумуфта; с — упорный подшипник; d, e — принцип действия упорного подшипника.
На судах, работающих в изменяющихся условиях, таких как буксиры или рыболовные суда (свободный ход, ход с тралом), движитель должен быть приспособлен к соответствующим условиям работы. Вместе с тем стало бы возможным одновременное использование полной мощности приводного двигателя при различных состояниях его нагрузки. Лопасти винта фиксированного шага отлиты вместе со ступицей или прочно привинчены к ней (см. рис. а). Изменять шаг можно на гребных винтах регулируемого шага ВРШ (рис. b). Лопасти гребного винта расположены на криволинейных дисках и укреплены на ступице винта так, что они могут поворачиваться. Применение ВРШ позволяет использовать нереверсивные двигатели в качестве судовых. Они могут работать и при постоянной частоте вращения, так как в этом случае можно осуществлять все маневры путем изменения угла атаки, т. е. от самого большого шага винта на переднем ходу, когда лопасти находятся в таком положении, что несмотря на вращение гребного винта, тяга не появляется (и поэтому судно не движется), до положения лопастей, соответствующего заднему ходу.
Рис. 28. Судовой движитель: а — гребной винт с неподвижными лопастями; b — винт регулируемого шага; с — гребной винт в насадке; d — соосные гребные винты. Иногда на судах (особенно на судах речного флота) гребной винт устанавливают в насадке (см. рис. с). Такая конструкция позволяет улучшить уелввия работы гребного винта и повысить КПД. Диаметр судового движителя может достигать 9 м, а масса — 50 т. Гребные винты регулируемого шага имеют меньший диаметр. Преобладающее число судов имеет только один гребной винт, устанавливаемый в диаметральной плоскости судна. Встречаются также двухвинтовые суда, которые приводятся в движение либо от двух малооборотных, либо от четырех среднеоборотных дизелей, причем в последнем случае один гребной винт приводится в движение двумя двигателями. В редких случаях строятся трехвинтовые суда, например торпедные катера, на которых два бортовых движителя, приводятся в движение от высокооборотных дизелей через редукторную передачу, а средний гребной винт — от газовой турбины. Некоторые большие пассажирские суда и боевые корабли, например авианосцы, снабжаются четырьмя симметрично расположенными гребными винтами. Рис. 29. Крыльчатый движитель: а — принцип действия; b — движитель Фойта-Шнейдера (вид сбоку); с — движитель Фойта Шнейдера (вид сверху); d — буксир с движителем Фойта-Шнейдера в носовой части судна; е — буксир с движителем Фойта-Шнейдера в кормовой части судна. I — «Стоп»; 2 — «Передний ход»; 3 — «Задний ход»; 4 — «Поворот на левый борт»; 5 — «Поворот на левый борт» (на заднем ходу); 6 — «Поворот на правый борт»; 7 — управляющий механизм; 8 — привод; 9 — лопасти; 10 — распределительные рычаги и тяги. Крыльчатый движитель может служить как в качестве пропульсивного движителя, так и в качестве руля. Судно, оснащенное двумя симметрично расположенными движителями, может двигаться в любом направлении. Недостатком является частая повреждаемость лопаткообразных лопастей, выступающих ниже днища судна. Крыльчатый движитель в основном используется на портовых буксирах и лоцманских судах, а также на судах портовой службы. Мощность подобных установок невелика: максимально она составляет 2200 кВт.
|
||||||||||||||
Последнее изменение этой страницы: 2016-12-10; просмотров: 714; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.147.86.30 (0.015 с.) |