Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Атомная энергетическая установка

Поиск

Рис. 23. Конструкция и принцип действия ядерного реактора.


Атомную энергетическую установку, которая в основном является модификацией паротурбинной, начали применять на судах в конце 50-х гг. XX в. К энергетической установке судна с атомным двигателем относятся реактор, парогенератор и турбинная установка, приводящая в движение судовой движитель. Реактор - это установка для получения ядерных цепных реакций, во время которых возникает энергия, преобразуемая далее в механическую. В ядерном реакторе созданы такие условия, что число расщеплений ядра за единицу времени является величиной постоянной, т. е. цепная реакция происходит постоянно.

Ядерное топливо содержит делящийся материал, как правило, уран или плутоний. При расщеплении ядер атомов, которые распадаются на так называемые фрагменты - или на свободные нейтроны высоких энергий, освобождается очень много энергии. Для уменьшения высокой энергии нейтронов служит замедлитель: графит, бериллий или вода. Для того чтобы свести к минимуму возможность потери нейтронов, устанавливают отражатель. Он состоит в основном из бериллия или графита.

1 — стальной корпус;

2 — замедлитель;

3 — отражатель;

4 — защита;

5 — тепловыделяющие элементы;

6 — вход теплоносителя;

7 — выход теплоносителя;

Регулирующие стержни.

Во избежание слишком сильного потока нейтронов в реакторе на соответствующей глубине устанавливают регулирующие стержни из поглощающих нейтроны материалов (кадмия, бора, индия). Энергообмен в реакторе происходит с помощью теплоносителей, воды, органических жидкостей, сплавов из легкоплавких металлов и т. д. В настоящее время на судах применяют, как правило, реакторы, охлаждаемые водой под давлением. Схема машинного отделения судна с реактором такого типа дана на рис. 24.

Рис. 24. Схема атомной энергетической установки с реактором, охлаждаемым водой под давлением.
1 — реактор; 2 — первичная биологическая защита; 3 — вторичная биологическая защита; 4 — парогенератор; 5 — нагревательный змеевик первого контура; 6 — циркуляционный насос первого контура; 7 — турбина высокого давления; 8 — турбина низкого давления; 9 — редуктор; 10 — конденсатор; 11 — насос вторичного контура; 12 — вход морской воды; 13 — выход морской воды

Эта установка имеет два контура циркуляции. Первый контур - циркуляция воды под высоким давлением. Вода первого контура служит одновременно теплоносителем ядерного реактора и имеет давление приблизительно от 5,8 до 9,8 МПа. Она протекает через реактор и нагревается, например на судах «Отто Хан» (ФРГ) и «Мутсу» (Япония), до 278°С. При этом давление воды противодействует испарению. Горячая вода первого контура, протекая через нагревательный змеевик, отдает свое тепло парогенератору, затем она снова возвращается к реактору. К парогенератору из второго контура низкого давления подается конденсат. Нагреваемая в парогенераторе вода испаряется. Этот пар с относительно низким давлением (например, на американском судне «Саванна» оно составляет 3,14 МПа) служит для питания турбин, которые через редуктор приводят во вращение гребной винт.
Ядерный реактор изолирован от окружающей среды защитным экраном, не пропускающим вредные радиоактивные лучи. Обычно применяются двойные экраны.

Первый (первичный) экран окружает реактор и изготовляется из свинцовых пластин с полиэтиленовым покрытием и из бетона. Вторичный экран окружает парогенератор и заключает внутри себя весь первый контур высокого давления. Этот экран в основном изготовляют из бетона толщиной от 500 мм («Отто Хан») до 1095 мм («Мутсу»), а также из свинцовых пластин толщиной 200 мал и полиэтилена толщиной 100 мм. Оба экрана требуют много места и имеют очень большую массу. Например, первичный экран на судне «Саванна» весит 665 т, а вторичный — 2400 т. Наличие таких экранов является большим недостатком атомных энергетических установок.

Рис. 25. Атомная энергетическая установка на морском судне.
1 — машинное отделение; 2 — контейнер с реактором; 3 — отсек вспомогательных механизмов; 4 — хранилище отработавших ТВЭЛ.

Другим, еще более существенным недостатком, является, несмотря на все защитные меры, опасность заражения окружающей среды как во время нормального функционирования энергетической установки вследствие отходов использованного топлива, выпуска трюмной воды из реакторного отсека и т. д., так и во время случайных аварий судна и атомной энергетической установки.
К неоспоримым преимуществам относятся очень низкий расход топлива и практически неограниченная дальность плавания. Например, судно «Отто Хан» (ФРГ) за три года не израсходовало даже 20 кг урана, в то время как расход топлива обычной паротурбинной энергетической установкой на судне таких размеров составил 40 тыс. т. Дальность плавания японского судна «Мутсу» составляет 145 тыс. миль. Несмотря на эти преимущества, атомные энергетические установки широко применяются только на боевых кораблях. Особенно выгодно их использовать на крупных подводных лодках, которые долгое время могут находиться под водой, так как для получения тепловой энергии в реакторе воздуха не требуется. Кроме того, атомными энергетическими установками оснащаются мощные ледоколы, используемые в северных широтах земного шара.

СУДОВЫЕ ПЕРЕДАЧИ МОЩНОСТИ

К важнейшим составным частям судовых энергетических установок относятся элементы передачи мощности. Под этим понимаются все элементы, участвующие в передаче крутящего момента от коленчатого вала или ротора в турбинах к гребному винту. Типовая дизельная энергетическая установка с двумя среднеоборотными дизелями показана на рисунке. Она включает в себя муфты, одноступенчатый редуктор, валопровод и гребной винт.

В энергетических установках с малооборотными дизелями редуктор отсутствует, в турбинных и энергетических установках с высокооборотными дизелями ставят двух- и трехступенчатые редукторы. В дизель- и турбоэлектрических энергетических установках предусмотрены электродвигатели.
Муфта соединяет узлы, выполняющие вращательные движения. Муфта предназначена для передачи крутящего момента от ведущего вала к ведомому, а также для сглаживания незначительных продольных, радиальных, угловых отклонений и крутильных колебаний. В зависимости от конструкции, назначения и принципа действия различают жесткие (глухие), упругие, фрикционные, гидродинамические и электромагнитные муфты. В судовых установках встречаются все виды муфт в зависимости от типа, мощности и конструкции главного двигателя. В установках, не имеющих передаточных механизмов (например, в малооборотных дизелях), чаще всего применяют жесткие муфты (рис. а, b). Фланцы жесткой муфты в разогретом состоянии запрессованы на вал или на конус и дополнительно зафиксированы призматической шпонкой.
В энергетических установках с редуктором связь между редуктором и двигателем, а также с валом гребного винта осуществляется со стороны двигателя чаще всего через соединительную муфту, а со стороны гребного винта — через разобщительную. На рис. е показана упругая муфта. Она состоит из двух оснований, соединенных между собой гибкими прокладками, изготовленными из специальной резины. Такие муфты винтами крепятся к фланцам вала. Они могут передавать моменты независимо от направления вращения. За счет гибких вкладышей возможно выравнивание при перекашивании валов относительно друг друга.

Рис. 24. Дизель-редукторная энергетическая установка со среднеоборотными дизелями. 1 — муфте; 2 — редуктор; 3 — валопровод; 4 — гребной винт

Работа гидродинамических муфт основывается на гидравлическом принципе, схематично показанном на рис. с. Это можно представить себе так: насос, приводимый в движение двигателем, отсасывает жидкость из резервуара, и нагнетает ее в турбину. Жидкость под определенным давлением протекает через лопатки турбины, приводя ее в движение, и затем течет обратно в резервуар. При одинаковых размерах роторов насоса и турбины агрегат работает как гидравлическая муфта, при различных — он превращается в гидротрансформаторную передачу, позволяющую изменять частоту вращения ведомого вала.
На практике роторы насосов и турбин находятся в специальном корпусе (рис. d). Действие гидродинамической муфты основывается на энергообмене между двумя полумуфтами (рис. d) с помощью рабочей среды и циркуляции жидкости. Эта циркуляция возникает только в том случае, когда первичная сторона и турбина имеют равные частоты вращения. У гидравлических муфт, используемых на судах, это скольжение составляет от 1,5 до 3%.

В судовых главных двигателях довольно часто применяют также электромагнитные индукционные скользящие муфты. Принцип действия подобной муфты состоит в использовании вращающего момента, возникающего вследствие воздействия вращающегося магнитного поля на индукционные токи. Внутренняя часть муфты расположена на ведущем вале. Обмотки полюсов через щетки и контактные кольца питаются постоянным током. Внешняя часть муфты имеет обмотку в виде беличьей клетки. Когда внешняя часть, приводимая в движение двигателем через вал, начинает вращаться и возбуждается, она вместе с валом, связанным с ней и ведущим, например, к редуктору, попадает в область вращения магнитного поля. За счет этого в обмотке типа беличьей клетки этой части муфты возникают индукционные токи. Эти токи, взаимодействуя с силовыми линиями магнитного поля, обусловливают возникновение момента вращения, вследствие чего внешняя часть муфты начинает вращаться вместе с внутренней. Таким образом вращение, мощность и момент вращения передаются от двигателя к валу редуктора.

Рис. 25. Судовые муфты.
а, b — жесткие (глухие) муфты: 1 — полумуфта; 2 — фланец; 3 — шпоночная канавка со шпонкой.
с — схема гидромуфты: 1, 2 — насосы; 3 — цистерна.
d — схема гидромуфты (турбо-муфты);
е — гибкая муфта. 4 — фланец; 5 — элемент муфты.
f — электромагнитная муфта.


Часть муфты с обмоткой типа беличьей клетки должна - аналогично гидродинамической и электромагнитной муфте - вращаться медленнее, чем вращающееся магнитное поле, так как при одинаковой скорости вращения обеих частей не могли бы возникнуть индуктированные токи и передача вращающего момента была бы невозможна. Поэтому и в данном случае имеет место так называемое скольжение муфты.

Редуктор главного двигателя должен передавать момент вращения и так изменять его частоту вращения, чтобы она имела оптимальную величину, необходимую для нормальной работы гребного винта. На судах чаще всего применяют механические редукторы, состоящие из зубчатых колес. С введением планетарного редуктора появилась возможность значительно уменьшить размеры и общую массу. В последнее время на новых судах все чаще используют планетарные редукторы в энергетических установках со среднеоборотными дизелями, газовыми или паровыми турбинами.

 
 

Рис. 26. Механический судовой редуктор: а — суммирующий; b — планетарный.
1 — вал турбины высокого давления; 2 — вал турбины низкого давления; 3, 5, 8, 9 — центральные солнечные шестерни; 4 — водило; 6 — свободный эпицикл; 7 — вал; 10 — тормозной эпицикл; 11 — свободное водило; 12 — полый вал; 13 — зубчатые колеса (3-я ступень); 14 — приводное зубчатое колесо гребного вала; 15 — гребной вал; 16 — гребной винт
.

Валопровод соединяет приводной двигатель с гребным винтом. Гребной вал, который в зависимости от расположения машинного отделения на судне может состоять из одной или нескольких соединенных через глухие муфты частей, должен передавать момент вращения двигателя на гребной винт. Гребной вал опирается на радиальные подшипники. Концевая часть проходит в уплотнительном сальнике, который предохраняет туннель гребного вала от попадания морской воды. На конусообразной концевой части гребного вала закреплен гребной винт (рис. а). Осевое давление, действующее со стороны гребного винта и передаваемое дальше через вал, воспринимается упорным подшипником.

Принцип действия упорного подшипника изображен на рис. d-е. Такой подшипник старого типа состоит из взаимодействующего с опорными поверхностями гребня давления; опорные поверхности залиты металлом. На переднем ходу функционирует одна поверхность гребня давления, на заднем — другая.

Гребной винт в настоящее время является почти единственным типом движителя. Он состоит из нескольких лопастей, радиально укрепленных на ступице. Во время вращения гребного винта вокруг своей оси на лопастях возникает сила давления, которая в конечном итоге обусловливает движение судна. Характерной величиной гребного винта является шаг. Его теоретическое значение, т. е. без учета скольжения, зависит от угла атаки лопасти гребного винта.

Для достижения хорошего взаимодействия между главным двигателем и гребным винтом необходимо, чтобы параметры и особенно шаг винта имели определенные значения. Оптимальное взаимодействие будет достигнуто лишь при определенном состоянии нагрузки судна и при определенных погодных условиях (ветер, волнение и т. д.). Если эти значения отклоняются от заданных, то взаимодействие двигателя и гребного винта не приносит результата, заложенного в проекте. На практике это означает, что взаимодействие двигателя и относящегося к нему гребного винта будет наиболее эффективным, например, при полной нагрузке судна и при хорошей погоде.

Рис. 27. Валопровод:

а — общий вид; b — полумуфта; с — упорный подшипник; d, e — принцип действия упорного подшипника.
1 — гребной вал; 2 — сальник; 3 — полу- подшипник; 6 — переборочный сальник; 7 — муфта; 4 — промежуточный вал; 5 — опорный упорный подшипник; 8 — упорный вал.

На судах, работающих в изменяющихся условиях, таких как буксиры или рыболовные суда (свободный ход, ход с тралом), движитель должен быть приспособлен к соответствующим условиям работы. Вместе с тем стало бы возможным одновременное использование полной мощности приводного двигателя при различных состояниях его нагрузки.

Лопасти винта фиксированного шага отлиты вместе со ступицей или прочно привинчены к ней (см. рис. а). Изменять шаг можно на гребных винтах регулируемого шага ВРШ (рис. b). Лопасти гребного винта расположены на криволинейных дисках и укреплены на ступице винта так, что они могут поворачиваться. Применение ВРШ позволяет использовать нереверсивные двигатели в качестве судовых. Они могут работать и при постоянной частоте вращения, так как в этом случае можно осуществлять все маневры путем изменения угла атаки, т. е. от самого большого шага винта на переднем ходу, когда лопасти находятся в таком положении, что несмотря на вращение гребного винта, тяга не появляется (и поэтому судно не движется), до положения лопастей, соответствующего заднему ходу.
Вначале ВРШ применяли только на буксирах, рыболовных и специальных судах, и только позднее их начали устанавливать на судах торгового флота. За счет установки ВРШ достигаются большая экономичность энергетических установок, возможность использования полной мощности двигателя при различной нагрузке, а также возможность применения нереверсивных ДВС или паровых турбин без турбин заднего хода. К преимуществам следует также отнести и возможность осуществления заднего хода при полной мощности двигателя.

 

Рис. 28. Судовой движитель: а — гребной винт с неподвижными лопастями; b — винт регулируемого шага; с — гребной винт в насадке; d — соосные гребные винты.

Иногда на судах (особенно на судах речного флота) гребной винт устанавливают в насадке (см. рис. с). Такая конструкция позволяет улучшить уелввия работы гребного винта и повысить КПД. Диаметр судового движителя может достигать 9 м, а масса — 50 т. Гребные винты регулируемого шага имеют меньший диаметр. Преобладающее число судов имеет только один гребной винт, устанавливаемый в диаметральной плоскости судна. Встречаются также двухвинтовые суда, которые приводятся в движение либо от двух малооборотных, либо от четырех среднеоборотных дизелей, причем в последнем случае один гребной винт приводится в движение двумя двигателями. В редких случаях строятся трехвинтовые суда, например торпедные катера, на которых два бортовых движителя, приводятся в движение от высокооборотных дизелей через редукторную передачу, а средний гребной винт — от газовой турбины. Некоторые большие пассажирские суда и боевые корабли, например авианосцы, снабжаются четырьмя симметрично расположенными гребными винтами.
В условиях постоянно растущих мощностей главных двигателей требуются гребные винты очень больших диаметров, что приводит к технологическим и производственным трудностям. Чтобы противодействовать этому и улучшить КПД, пытаются «устанавливать движители, вращающиеся в противоположных направлениях (см. рис. d). В этом случае необходимы сложные устройства, такие как полые гребные валы и специальные редукторные передачи.
Наряду с гребными винтами в последнее время применяют крыльчатые движители. Они состоят из нескольких вращающихся навесных лопаткообразных лопастей изменяющегося профиля, укрепленных на плоском рабочем колесе. Рабочее колесо приводится в движение главным двигателем через гипоидный зубчатый редуктор. Вращающиеся лопаткообразные лопасти создают силу упора, действующую в направлении, зависящем от угла установки.лопастей, как показано на рис. а. Во время работы движителя можно плавно изменять угол атаки лопастей.

Рис. 29. Крыльчатый движитель: а — принцип действия; b — движитель Фойта-Шнейдера (вид сбоку); с — движитель Фойта Шнейдера (вид сверху); d — буксир с движителем Фойта-Шнейдера в носовой части судна; е — буксир с движителем Фойта-Шнейдера в кормовой части судна.

I — «Стоп»; 2 — «Передний ход»; 3 — «Задний ход»; 4 — «Поворот на левый борт»; 5 — «Поворот на левый борт» (на заднем ходу); 6 — «Поворот на правый борт»; 7 — управляющий механизм; 8 — привод; 9 — лопасти; 10 — распределительные рычаги и тяги.

Крыльчатый движитель может служить как в качестве пропульсивного движителя, так и в качестве руля. Судно, оснащенное двумя симметрично расположенными движителями, может двигаться в любом направлении. Недостатком является частая повреждаемость лопаткообразных лопастей, выступающих ниже днища судна. Крыльчатый движитель в основном используется на портовых буксирах и лоцманских судах, а также на судах портовой службы. Мощность подобных установок невелика: максимально она составляет 2200 кВт.



Поделиться:


Последнее изменение этой страницы: 2016-12-10; просмотров: 714; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.224.58.121 (0.015 с.)