Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Топливно-энергетические ресурсы (ТЭР). Восполняемые и невосполняемые энергетические ресурсы.↑ Стр 1 из 8Следующая ⇒ Содержание книги
Поиск на нашем сайте
Сущность энергосбережения. Основные понятия в энергосбережении. Энергетика – это топливно-энергетический комплекс страны, охватывающий получение, передачу, преобразование и использование различных видов энергии и энергетических ресурсов. Энергосбережение – это организационная, научная, практическая, информационная деятельность государственных органов, юридических и физических лиц, направленная на снижение расхода (потерь) топливно-энергетических ресурсов в процессе их добычи, переработки, транспортировки, хранения, производства, использования и утилизации. Топливно-энергетические ресурсы (ТЭР) – это совокупность всех природных и преобразованных видов топлива и энергии, используемых в Республике. Эффективное использование топливно-энергетических ресурсов – это использование всех видов энергии экономически оправданными, прогрессивными способами при существующем уровне развития техники и технологий и соблюдении законодательства. Рациональное использование топливно-энергетических ресурсов – это достижение максимальной эффективности использования ТЭР при существующем уровне развития техники и технологий и соблюдении законодательства. Топливно-энергетические ресурсы (ТЭР). Восполняемые и невосполняемые энергетические ресурсы. Топливно-энергетические ресурсы (ТЭР) – это совокупность всех природных и преобразованных видов топлива и энергии, используемых в Республике. Энергетические ресурсы являются частью всей совокупности природных ресурсов и подразделяются на восполняемые и невосполняемые. Восполняемыми, или возобновляемыми источниками энергии называются источники, потоки энергии которых постоянно существуют или периодически возникают в окружающей среде и не являются следствием целенаправленной деятельности человека. К восполняемым энергоресурсам относят энергию: - Солнца; - мирового океана в виде энергии приливов и отливов, энергии волн; - рек; - ветра; - морских течений; - соленую; - вырабатываемую из биомассы; - водостоков; - твердых бытовых отходов; - геотермальных источников. Недостатком возобновляемых источников энергии является низкая степень ее концентрации. Но это в значительной степени компенсируется широким распространением, относительно высокой экологической частотой и их практической неисчерпаемостью. Такие источники наиболее рационально использовать непосредственно вблизи потребителя без передачи энергии на расстояние. Энергетика, работающая на этих источниках, использует потоки энергии, уже существующие в окружающем пространстве, перераспределяет, но не нарушает их общий баланс. Основным сдерживающим фактором использования возобновляемых источников энергии в мире являются высокие первоначальные инвестиции в оборудование и инфраструктуру. Предполагается, что к 2100 году большую часть потребляемой энергии человечество будет получать именно из возобновляемых источников. Невозобновляемые источники энергии – это природные запасы вещества и материалов, которые могут быть использованы человеком для производства энергии. К невосполняемым энергетическим ресурсам относят: - каменный уголь, запасы которого в мире оцениваются в 10-12 трлн т; - нефть, запасы которой распределены крайне неравномерно на Земле: на Ближнем и Среднем Востоке - 67, в Африке - 12,5, Юго-Восточной Азии и Дальнем Востоке - 3, Северной Америке - 9, Центральной и Южной Америке - 5,5, Западной Европе - 3 %. По уровню добычи нефти Россия занимает 3-е место в мире, уступая только Саудовской Аравии и США. - природный газ, запасы которого сосредоточены в России (32 %), Иране (15,7 %), Катаре (6 %). Добыча газа в России составляет 25,1, в США - 24,1, Канаде -8,1 % от мировой. Владельцами крупных газовых месторождений также являются: Казахстан, Туркменистан, Ирак, Саудовская Аравия, Объединенные Арабские Эмираты, Египет, Алжир, Ливия. Активно осваиваются газовые шельфы в Северном и Норвежском морях. Суммарные запасы природного газа здесь превышают российские. Весь комплекс первичных энергоресурсов, ограниченных определенной территорией, объединяется понятием местные ТЭР.
Топливно-энергетический комплекс РБ. Анализ потребления ТЭР по отраслям в РБ. В стране действует более 30 актов законодательства, регулирующих общественные отношения в сфере энергосбережения, в т.ч. международные договоры РБ, связанные с реализацией в стране политики энергосбережения (Приложение 3). В настоящее время разработана Концепция проекта нового Закона РБ «Об энергосбережении». Структура НПА, регулирующих сферу энергоэффективности и энергосбережения Основные принципы политики и стратегии государства в сфере энергоэффективности определены в Законе РБ «Об энергосбережении» (1998 г.). Закон Республики Беларусь "О возобновляемых источниках энергии" 2010 г. Директива Президента Республики Беларусь от 14 июня 2007 г. № 3 "Экономия и бережливость - главные факторы экономической безопасности государства", Постановления СМ и Госстандарта. Стандарты Указы Президента
Принципиальными указаниями Директивы №3 являются следующие: · Обеспечить энергетическую безопасность и энергетическую независимость страны. · Принять кардинальные меры по экономии и бережливому использованию топливно-энергетических и материальных ресурсов во всех сферах производства и в ЖКХ. · Ускорить техническое переоснащение и модернизацию производства на основе внедрения энерго- и ресурсосберегающих технологий и техники. · Обеспечить стимулирование экономии топливно-энергетических и материальных ресурсов. · Широко пропагандировать среди населения необходимость соблюдения режима повсеместной экономии и бережливости. · Установить эффективный контроль за рациональным использованием топливно-энергетических и материальных ресурсов. · Повысить ответственность руководителей государственных органов и иных организаций, граждан за неэффективное использование топливно-энергетических и материальных ресурсов, имущества.
Атомные электроcтанции. Такие электростанции действуют по такому же принципу, что и ТЭЦ, но используют для парообразования энергию, получающуюся при радиоактивной распаде. В качестве топлива используется обогащенная руда урана.
Рис. 12. Принципиальная схема АЭС. По сравнению с тепловыми и гидроэлектростанциями атомные электростанции имеют серьезные преимущества: они требуют малое количество топлива, не нарушают гидрологических режим рек, не выбрасывают в атмосферу загрязняющие ее газы. Основной процесс, идущий на атомной электростанции - управляемое расщепление урана-235, при котором выделяется большое количество тепла. Главная часть атомной электростанции - ядерный реактор, роль которого заключается в поддержании непрерывной реакции расщепления. Ядерное топливо - руда, содержащая 3% урана 235; ею заполняются длинные стальные трубки - тепловыделяющие элементы (ТВЭЛы). Если много ТВЭЛов разместить поблизости друг от друга, то начнется реакция расщепления. Чтобы реакцию можно было контролировать, между ТВЭЛами вставляют регулирующие стержни; выдвигая и вдвигая их, можно управлять интенсивностью распада урана-235. Комплекс неподвижных ТВЭЛов и подвижных регуляторов и есть ядерные реактор. Тепло, выделяемое реактором, используется для кипячения воды и получения пара, который приводит в движение турбину атомной электростанции, вырабатывающую электричество. 33. Преобразования солнечной энергии в тепловую и электрическую. Ветроэнегетика и гидроэнергетика. Основным направлением использования солнечной энергии является теплоснабжение. Для прямого преобразования солнечной энергии в тепловую разработаны и широко используются на практике установки солнечного теплоснабжения (СТО) для различных целей (горячее водоснабжение, отопление и кондиционирование воздуха в жилых, общественных, санаторно-курортных зданиях, подогрев воды в плавательных бассейнах и различных процессах сельскохозяйственного производства). По данным метеорологов в Республике Беларусь 150 дней в году пасмурно, 185 дней - с переменной облачностью и 30 - ясных, а всего число часов солнечного сияния в Беларуси достигает 1200 часов на севере страны и 1300-на юге. Солнечная электростанция представляет собой сооружение, состоящее из множества солнечных коллекторов, ориентирующихся на Солнце. Каждый коллектор передает солнечную энергию жидкости-теплоносителю, которая, превратившись в пар, от всех коллекторов собирается в центральной энергостанции и поступает на турбину энергогенератора. Рисунок 13 - Последовательность приемников солнечного излучения в порядке возрастания их эффективности и стоимости Основным элементом солнечной нагревательной системы является приемник, в котором происходит поглощение солнечного излучения и передача энергии жидкости. На рисунке 13 схематически изображены различные варианты приемников солнечной энергии. Опыт эксплуатации этих установок показывает, что в системах солнечного горячего водоснабжения может быть замещено 40-60 % годовой потребности в органическом топливе в зависимости от района расположения при нагреве воды до 40... 60 °С. а) открытый резервуар на поверхности земли; б) открытый резервуар, теплоизолированный от земли; в) черный резервуар; г) черный резервуар с теплоизолированным дном; д) закрытые черные нагреватели, е) металлические проточные нагреватели со стеклянной крышкой; ж) металлические проточные нагреватели с двумя стеклянными крышками; з) то же, с селективной поверхностью; и) то же, с вакуумом. Воздухонагреватель представляет собой приемник, в котором имеется пористая или шероховатая черная поглощающая поверхность, нагревающая поступающий воздух, который затем подается к потребителю. Солнечный коллектор включает в себя приемник, поглощающий солнечное излучение, и концентратор, представляющий собой оптическую систему, собирающую солнечное излучение и направляющую его на приемник. Концентратор представляет собой чаще всего зеркало параболической формы, в фокусе которого располагается приемник излучения. Он постоянно вращается, обеспечивая ориентацию на Солнце. Фотоэлектрические преобразователи представляют собой устройства, действие которых основано на использовании фотоэффекта, в результате которого при освещении вещества светом происходит выход электронов из металлов (фотоэлектрическая эмиссия или внешний фотоэффект), перемещение зарядов через границу раздела полупроводников с различными типами проводимости (вентильный фотоэффект), изменение электрической проводимости (фотопроводимость). Методы фотоэлектри-ческого преобразования солнечной энергии в электрическую находит применение для питания потребителей в широком интервале мощностей: от мини-генераторов для часов и калькуляторов мощностью от несколько ватт до центральных электростанций мощностью несколько мегаватт. Ветроэнергетика представляет собой область техники, использующую энергию ветра для производства энергии, а устройства, преобразующие энергию ветра в полезную механическую, электрическую или тепловую виды энергии, называются ветроэнергетическими установками (ВЭУ), или ветроустановками, и являются автономными Энергия ветра в механических установках, например на мельницах и в водяных насосах, используется уже несколько столетий. После резкого скачка цен на нефть в 1973 г. интерес к таким установкам резко возрос. Большая часть существующих установок построена в конце 70-х - начале 80-х годов на современном техническом уровне при широком использовании последних достижений аэродинамики, механики, микроэлектроники для контроля и управления ими. Ветроустановки мощностью от нескольких киловатт до нескольких мегаватт производятся в Европе, США и других частях мира. Большая часть этих установок используется для производства электроэнергии, как в единой энергосистеме, так и в автономных режимах. Одно из основных условий при проектировании ветроустановок - обеспечение их защиты от разрушений очень сильными случайными порывами ветра. В каждой местности в среднем раз в 50 лет бывают ветры со скоростью, в 5-10 раз превышающей среднюю, поэтому ветроустановки приходиться проектировать с большим запасом прочности. Максимальная проектная мощность ветроустановки определяется для некоторой стандартной скорости ветра, обычно принимаемой равной 12 м/с. Ветроэнергетическая установка состоит из ветроколеса, генератора электрического тока, сооружения для установки на определенной высоте от земли ветряного колеса, системы управления параметрами генерируемой электроэнергии в зависимости от изменения силы ветра и скорости вращения колеса. Ветроустановки классифицируются по двум основным признакам: геометрии ветроколеса и его положению относительно направления ветра. Если ось вращения ветроколеса параллельна воздушному потоку, то установка называется горизонтально-осевой, если перпендикулярно-вертикально-осевой. Принцип действия ветроэнергетической установки состоит в следующем. Ветряное колесо, воспринимая на себя энергию ветра, вращается и посредством пары конических шестерен и с помощью длинного вертикального вала передает свою энергию на нижний горизонтальный трансмиссионный вал и далее посредством второй пары конических шестерен и ременной передачи - электрическому генератору или другому механизму. Поскольку периоды безветрия неизбежны, то для исключения перебоев в электроснабжении ВЭУ должны иметь аккумуляторы электрической энергии или быть запараллелены, на случаи безветрия, с электроэнергетическими установками других типов. Энергетическая программа Республики Беларусь до 2010 г основными направлениями использования ветроэнергетических ресурсов на ближайший период предусматривает их применение для привода насосных установок и в качестве источников энергии для электродвигателей. Эти области применения характеризуются минимальными требованиями к качеству электрической энергии, что позволяет резко упростить и удешевить ветроэнергетические установки. Особенно перспективным считается их использование в сочетании с малыми гидроэлектростанциями для перекачки воды. Применение ветроэнергетических установок для водоподъёма, электроподогрева воды и электроснабжения автономных потребителей к 2010 г. предполагается довести до 15 МВт установленной мощности, что обеспечит экономию 9 тыс. т у т. в год. Гидроэлектростанция. Гидроэнергетика представляет отрасль науки и техники по использованию энергии движущийся воды (как правило, рек) для производства электрической, а иногда и механической энергии. Это наиболее развитая область энергетики на возобновляемых ресурсах. Гидроэлектростанция представляет собой комплекс различных сооружений и оборудования, использование которых позволяет преобразовывать энергию воды в электроэнергию. Гидротехнические сооружения обеспечивают необходимую концентрацию потока воды, а дальнейшие процессы производятся при помощи соответствующего оборудования. Гидроэлектростанции возводятся на реках, сооружая плотины и водохранилища. В гидроэлектростанции кинетическая энергия падающей воды используется для производства электроэнергии. Турбина и генератор преобразовывают энергию воды в механическую энергию, а затем - в электроэнергию. Турбины и генераторы установлены либо в самой дамбе, либо рядом с ней. Рис. 14. Принципиальная схема гидроэлектростанции.
Учет расхода газа Учет расхода газа на предприятиях газового хозяйства возложен на созданные на каждом предприятии службы режимов газоснабжения и учета расхода газа, которые подчиняются непосредственно руководителю предприятия, а в производственных подразделениях предприятия - на группы режимов отдельного газоснабжения и учета расхода газа. Подача природного газа промышленным, сельскохозяйственным предприятиям, предприятиям бытового обслуживания населения производственного и непроизводственного характера и индивидуальным предпринимателям осуществляется по магистральным газопроводам через газораспределительные станции (ГРС) «Белтрансгаза» на основании договоров. Количество поданного газа определяется на основании двухсторонних актов, основанных на показаниях приборов учета расхода газа, установленных на ГРС или на головных (промежуточных) газораспределительных пунктах (ГРП) предприятий газового хозяйства с введением поправочных коэффициентов. Количество газа, отпущенного (израсходованного) потребителями за календарный месяц, определяется на основании двухсторонних актов, основанных на показаниях приборов учета расхода газа, установленных у потребителей, с введением соответствующих поправочных коэффициентов. При отсутствии приборов учета расхода газа, температуры, давления или при их неисправности у потребителя, а также в случаях: - признания записей или показаний приборов недействительными; - несвоевременного представления данных о расходе газа (картограмм, показаний счетчиков); - отсутствия пломб; - пользования газом через байпасный газопровод. количество отпущенного (израсходованного) газа определяется по паспортной производительности неопломбированных газоиспользующих установок и количества часов работы потребителя за время неисправности (отсутствия) приборов учета расхода газа или по аналогии с сутками и месяцами, когда приборы работали с введением необходимых поправок. Подача газа через байпасный газопровод может осуществляться только с разрешения поставщика. Пломбирование газогорелочных систем фиксируется двухсторонними актами. Количество природного газа, использованного для нужд пищеприготовления, горячего водоснабжения, отопления и кормоприготовления определяются: - в домах (квартирах), оборудованных счетчиками - по показаниям счетчиков; - в домах (квартирах), не оборудованных счетчиками, - по нормам, утвержденным в установленном порядке (таблица 1). Учет количества газа осуществляется счетчиками, представляющими собой приборы, предназначенные для измерения суммарного объема газа, протекающего по трубопроводу за конкретный отрезок времени (час, сутки и т. д.). Газовые счетчики бывают ротационного и турбинного типа. Ротационные учитывают объемное количество прошедшего газа в рабочем состоянии. Турбинные газовые счетчики для узлов учета должны быть точно подобраны по рабочему давлению газа, его максимальному и минимальному расходу, диаметру условного прохода. В период отключения домов от централизованного горячего водоснабжения на время ремонта тепловых сетей продолжительностью 25 и более суток качестве норм расхода газа принимаются нормы, установленные для квартир без центрального горячего водоснабжения и без проточных водонагревателей.
Экономия тепла Утепление оконных и дверных блоков позволяет повысить температуру в квартирах и домах на 4–5 °С и отказаться от электрообогревателя, который за сезон потребляет до 4000 кВт∙ч. Есть несколько простых способов утепления: •заделка щелей в оконных рамах и дверных проемах. Для этого используются монтажные пены, саморасширяющиеся герметизирующие ленты, силиконовые и акриловые герметики и т.д. Результат — повышение температуры воздуха в помещении на 1–2 °С; •уплотнение притвора окон и дверей с помощью различных самоклеящихся уплотнителей и прокладок. Уплотнение окон производится не только по периметру, но и между рамами. Результат — повышение температуры внутри помещения на 1–3 °С; •установка новых пластиковых или деревянных окон с многокамерными стеклопакетами, стеклами с теплоотражающей пленкой и проветривателями. Тогда температура в помещении будет стабильной и зимой, и летом, воздух — свежим, исчезнет необходимость периодически открывать окно, выбрасывая большой объем теплого воздуха. Результат — повышение температуры в помещении на 2–5 °С и снижение уровня уличного шума; •установка второй двери на входе в квартиру (дом). Результат — повышение температуры в помещении на 1–2 °С, снижение уровня внешнего шума и загазованности; •установка теплоотражающего экрана (или алюминиевой фольги) на стену за радиатор отопления. Результат — повышение температуры в помещении на 1 °С. Старайтесь не закрывать радиаторы плотными шторами, экранами, мебелью — тепло будет эффективнее распределяться в помещении. Замените чугунные радиаторы на алюминиевые: их теплоотдача на 40–50% выше. Если радиаторы установлены с учетом удобного съема, имеется возможность регулярно их промывать, что также способствует повышению теплоотдачи. Остекление балкона или лоджии эквивалентно установке дополнительного окна. Это создает тепловой буфер с промежуточной температурой на 10 °С выше, чем на улице, в сильный мороз. Не редкость, когда есть проблема не с недостатком тепла, а с его избытком. Решением станет установка терморегуляторов на радиаторы. Экономия воды Обязательно установите счетчики воды. Это будет мотивировать к сокращению расхода воды. Устанавливайте рычажные переключатели на смесители вместо поворотных кранов. Экономия воды составит 10–15% плюс удобство в подборе температуры. Не включайте воду на полный напор. В 90% случаев вполне достаточно небольшой струи, потребление воды сокращается при этом в 4–5 раз. При умывании и принятии душа отключайте воду, когда в ней нет необходимости. На принятие душа уходит в 10–20 раз меньше воды, чем на принятие ванны. Существенная экономия воды происходит при применении двухкнопочных сливных бачков. Необходимо тщательно проверить наличие утечки воды из сливного бачка, которая возникает из-за старой фурнитуры. Замена фурнитуры не слишком затратное мероприятие, а экономия воды существенная. Через тонкую струю утечки вы можете терять несколько кубометров воды в месяц. В целом сокращение потребления воды в 4 раза — задача вполне реализуемая и малозатратная. Экономия газа Экономия газа прежде всего актуальна, если в квартирах установлены счетчики газа, есть индивидуальные отопительные пункты и в частных домах с АОГВ. В этом случае все меры по экономии тепла и горячей воды приводят к экономии газа. При приготовлении пищи также есть возможности сэкономить газ: •пламя горелки не должно выходить за пределы дна кастрюли, сковороды, чайника, иначе вы просто греете воздух в квартире (экономия 50% и более); •деформированное дно посуды приводит к перерасходу газа до 50%; •посуда, в которой готовится пища, должна быть чистой и не пригоревшей. Загрязненная посуда требует в 4–6 раз больше газа для приготовления пищи; •применяйте экономичную посуду, эти качества обычно указывает ее производитель. Самые энергоэкономичные изделия — из нержавеющей стали с полированным дном, особенно со слоем меди или алюминия. Посуда из алюминия, эмалированная, с тефлоновым покрытием неэкономична; •дверца духовки должна плотно прилегать к корпусу плиты и не выпускать раскаленный воздух. В целом просто экономное использование газа дает сокращение его потребления в 2 раза, использование предлагаемых мер - примерно в 3 раза.
Парниковый эффект Парниковый эффект- это свойство атмосферы пропускать солнечную радиацию, но задерживать земное излучение и, тем самым, способствовать аккумуляции тепла Землей. В приложении к климатической Конвенции ООН названы технологические процессы, приводящие к эмиссии парниковых газов: -в энергетике - сжигание топлива, энергетическая, обрабатывающая и строительная промышленности; -при добыче и транспортировке топлива - твердое топливо, нефть и природный газ; -промышленные технологии - горнодобывающая, химическая, металлургическая, производство и использование галогенизированных углеродных соединений; -в сельском хозяйстве - интенсивная ферментация, хранение и использование навоза, производство риса, управляемый пал, сжигание сельскохозяйственных отходов; -отходы - хранение и сжигание отходов, -обработка сточных вод. Основным загрязнителем атмосферы является С02, образующийся при выработке электроэнергии в основном огневым способом, то есть путем сжигания добываемого органического топлива. Страны, производящие % электроэнергии на АЭС, предотвращают эмиссию С02. Поэтому на конференции в Киото подчеркивалось, что только страны, имеющие ядерно-энергетические программы и поддерживающие их, располагают большими возможностями сокращения выброса парниковых газов. Одним из самых загрязненных городов-столиц государств является Пекин с его 12-милионным населением. Основной причиной его загрязнения являются промышленные предприятия, густо разбросанные по городу. Во многом способствует загрязнению Пекина и отопление домов углем. Основным источником загрязнения окружающей среды является автотранспорт. Он использует 96 % всех производимых нефтепродуктов и выбрасывает затем в атмосферу тысячи тонн оксида углеводорода, оксида азота и других вредных веществ. Всего в выхлопных газах двигателя внутреннего сгорания содержится около 100 вредных для здоровья человека соединений. В среднем каждый автомобиль в год выбрасывает около 1т вредных веществ. Наряду с этим, автомобиль – один из самых крупных источников шума и вибрации. Основным нейтрализатором вредных выбросов в атмосферу являются леса, занимающие 37 % территории Республики Беларусь, и болота, которые в 7 раз эффективнее, чем лес, поглощают углекислый газ. В городах основным очистителем воздуха являются тополиные насаждения: один тополь очищает воздух так, как делают это 4 сосны или 7 елей, или 3 липы. Экологические проблемы тепловой энергетики. В выбросах ТЭС содержится значительное количество металлов и их соединений. Тепловая энергетика оказывает отрицательное влияние практически на все элементы окружающей среды, в том числе на человека, другие живые организмы и их сообщества. Влияние энергетики на окружающую среду сильно зависит от вида используемого топлива. Наиболее «чистым» топливом является природный газ, дающий, при его сжигании наименьшее количество загрязняющих атмосферу веществ. Далее следует нефть (мазут), каменные угли, бурые угли, сланцы, торф. При сжигании топлива образуется много побочных веществ. При сжигании угля образуется значительное количество золы и шлака. Большую часть золы можно уловить, но не всю. Все отходящие газы, потенциально вредны, (диоксид углерода СО2). При сжигании топлива образуется теплота, часть которой выбрасывается в атмосферу, приводя к тепловому загрязнению атмосферы, что в конечном итоге, влечет повышение температуры водного и воздушного бассейнов, таянию ледников. Таким же катастрофическим может быть эффект от поступления в атмосферу большого количества твердых частиц. Экологические проблемы гидроэнергетики. Одно из важнейших воздействий гидроэнергетики связано с отчуждением значительных площадей плодородных (пойменных) земель под водохранилища, на месте которых уничтожаются естественные экологические системы. Значительные площади земель вблизи водохранилищ испытывают подтопление в результате повышения уровня грунтовых вод. Эти земли, как правило, переходят в категорию заболоченных. Со строительством водохранилищ связано резкое нарушение гидрологического режима рек, свойственных им экосистем и видового состава населяющих их живых организмов. Кроме того, в водохранилищах по разным причинам происходит ухудшение качества воды. В них резко увеличивается количество органических веществ как за счет ушедших под воду экосистем (древесина, другие растительные осадки, гумус почв и т.п.), так и в следствие их накопления в результате замедленного водообмена. Это своего рода отстойники и аккумуляторы веществ, поступающих с водосбросов. В водохранилищах резко усиливается прогревание воды, что интенсифицирует потерю ими кислорода и другие процессы, обусловливаемые тепловым загрязнением. Последнее, совместно с накоплением биогенных веществ, создает условия для зарастания водоемов и интенсивного развития водорослей, в том числе и ядовитых. По этим причинам, а также вследствие медленной восстанавливаемости вод резко снижается их способность к самоочищению. Ухудшение качества воды ведет к гибели многих ее обитателей. Возрастает заболеваемость рыбного стада, особенно поражение гельминтами. Снижаются вкусовые качества обитателей водной среды. Нарушаются пути миграции рыб, идет разрушение кормовых угодий, нерестилищ и т.п.
Экологические проблемы ядерной энергетики. До недавнего времени ядерная энергетика рассматривалась как наиболее перспективная. К преимуществам АЭС относится также возможность их строительства, не привязываясь к месторождениям ресурсов, поскольку их транспортировка не требует существенных затрат в связи с малыми объемами (0,5 кг ядерного топлива позволяет получать столько же энергии, сколько дает сжигание 1000 тонн каменного угля). До недавнего времени основные экологические проблемы АЭС связывались с захоронением отработанного топлива, а также с ликвидацией самих АЭС после окончания допустимых сроков их эксплуатации. При нормальной работе АЭС выбросы радиоактивных элементов в окружающую среду незначительны. В среднем они в 2-4 раза меньше, чем от ТЭС такой же мощности, работающей на угле. После 1986 г. главную экологическую опасность АЭС стали связывать с возможностью аварий на них. В результате аварии на ЧАЭС общая площадь загрязненных территорий превышает 8 млн. га. Кроме страшных последствий аварийных ситуаций на АЭС можно назвать следующие их воздействия на окружающую среду: - разрушение экосистем и их элементов (почв, грунтов водоносных структур и т.п.) в местах добычи руд, особенно при открытом способе добычи; - изъятие земель под строительство самих АЭС. Особенно значительные территории отчуждаются под строительство сооружений для подачи, отвода и охлаждения подогретых вод. Для АЭС мощностью 1000 МВт требуется пруд-охладитель площадью около 800~900 га. Пруды могут заменяться гигантскими градирнями с диаметром у основания 100-120 и высотой, равной 40-этажному зданию; - изъятие значительных объемов воды из различных источников и сброс подогретых вод. Если эти воды попадают в реки и другие естественные источники, в них наблюдается потеря кислорода, увеличивается вероятность цветения, возрастают явления теплового стресса у водных обитателей - не исключено попадание радиоактивного загрязнения в атмосферный воздух, воду, почву в процессе добычи и транспортировки сырья, а также при работе АЭС, складировании и переработке отходов, их захоронениях.
Парниковый эффект Глобальное потепление является твердо установленным научным фактом. Основной причиной глобальных процессов, изменение климата на нашей планете являются существующие технологии, оказывающие негативное воздействие не только на климат, но и на здоровье людей, выбрасывая в атмосферу парниковые газы, которые обуславливают парниковый эффект. Парниковый эффект- это свойство атмосферы пропускать солнечную радиацию, но задерживать земное излучение и, тем самым, способствовать аккумуляции тепла Землей. В приложении к климатической Конвенции ООН названы технологические процессы, приводящие к эмиссии парниковых газов: -в энергетике - сжигание топлива, энергетическая, обрабатывающая и строительная промышленности; -при добыче и транспортировке топлива - твердое топливо, нефть и природный газ; -промышленные технологии - горнодобывающая, химическая, металлургическая, производство и использование галогенизированных углеродных соединений; -в сельском хозяйстве - интенсивная ферментация, хранение и использование навоза, производство риса, управляемый пал, сжигание сельскохозяйственных отходов; -отходы - хранение и сжигание отходов, -обработка сточных вод. Основным загрязнителем атмосферы является С02, образующийся при выработке электроэнергии в основном огневым способом, то есть путем сжигания добываемого органического топлива. Страны, производящие % электроэнергии на АЭС, предотвращают эмиссию С02. Поэтому на конференции в Киото подчеркивалось, что только страны, имеющие ядерно-энергетические программы и поддерживающие их, располагают большими возможностями сокращения выброса парниковых газов. Одним из самых загрязненных городов-столиц государств является Пекин с его 12-милионным населением. Основной причиной его загрязнения являются промышленные предприятия, густо разбросанные по городу. Во многом способствует загрязнению Пекина и отопление домов углем.
Промышленность Основными направлениями энергосбережения в промышленности являются: - структурная перестройка предприятий, направленная на выпуск менее энергоемкой, конкурентоспособной продукции; - специализация и концентрация отдельных энергоемких производств (литейных, термических, гальванических и др.) по регионам; - модернизация и техническое перевооружение производств на базе наукоемких ресурсо- и энергосберегающих и экологически чистых технологий; - совершенствование существующих схем энергоснабжения предприятий; - повышение эффективности работы котельных и компрессорных установок; - использование вторичных энергоресурсов и альтернативных видов топлива, в т. ч. горючих отходов производств; - применение источников энергии с высокоэффективными термодинамическими циклами (ПТУ, ГТУ и т. п.); - применение эффективных систем теплоснабжения, освещения, вентиляции, горячего водоснабжения; - расширение сети демонстрационных объектов; - реализация крупных комплексных проектов, влияющих на уровень энергопотребления в республике, ее энергообеспеченность и эффективность использования энергии. Первоочередными мероприятиями являются: - модернизация термического оборудования (печей, подогревателей, утилизаторов тепла, сушильных камер и т. п.); - утилизации тепла уходящих газов; - повышение эффективности работы котельных путём автоматизации основных и вспомогательных процессов, оптимизации процессов горения, установки в промышленных котельных турбогенераторов малой мощности; - снижение затрат на теплоснабжение зданий и сооружений, вентиляцию, освещение, горячее теплоснабжение.
Сельское хозяйство В сельском хозяйстве основными направлениями повышения эффективности использования ТЭР на период до 2005 года являются: - внедрение энергоэффективных систем микроклимата, кормления, поения, содержания молодняка; - внедрение эффективных сушильных установок для зерна, в т. ч. на местных видах топлива; - внедрение систем обогрева производственных помещений инфракрасными излучателями; - использование гелиоколлекторов для нагрева воды, используемой на технологические нужды; - внедрение частотно-регулируемого привода для технологических установок, вспомо
|
||||
Последнее изменение этой страницы: 2016-04-08; просмотров: 8810; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.141.38.5 (0.023 с.) |