Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Изучение правил порядка действий.

Поиск

Цель работы на данном этапе — опираясь на практические умения учащихся, обратить их внимание на порядок выполнения действий в таких выражениях и сформулировать соответствующее правило.

Работа ведется в такой последовательности:

1. Рассматривается правило о порядке выполнения действий в

выражениях без скобок, когда над числами производят либо только сложение и вычитание, либо только умножение и деление. Вывод: если в выражении без скобок указаны только действия сложения и вычитания (или только действия умножения и деления), то их выполняют в том порядке, в каком они записаны (т. е. слева направо).

2. Аналогично изучают порядок действий в выражениях со скобками

вида: 85-(46-14),60: (30-20), 90: (2*5). С такими выражениями учащиеся также знакомы и умеют их читать, записывать и вычислять их значение. Объяснив порядок выполнения действий в нескольких таких выражениях, дети формулируют вывод: в выражениях со скобками первым выполняется действие над числами, записанными в скобках.

3. Наиболее трудным является правило порядка выполнения действий в выражениях без скобок, когда в них содержатся действия первой и второй ступени. Вывод: порядок действий принят по договоренности: сначала выполняется умножение, деление, затем сложение, вычитание слева на право.

4. Упражнения на вычисления значения выражений, когда ученику приходится применять все изученные правила.

Ознакомление с тождественными преобразованиями выражений.

Тождественное преобразование выражения — это замена данного выражения другим, значение которого равно значению заданного выражения.

Учащиеся выполняют такие преобразования выражений, опираясь на свойства арифметических действий и следствия, вытекающие из них (как прибавить сумму к числу, как вычесть число из суммы, как умножить число и, произведение и др.). При изучении каждого свойства учащиеся убеждаются в том, что в выражениях определенного вида можно выполнять действия по-разному, но значение выражения при этом не изменяется (значение выражения не меняется при изменении порядка действий только, в том случае, если при этом применяются свойства действий)

Ознакомление с буквенными выражениями.

Уже в I классе возникает необходимость введения символа, обозначающего неизвестное число. В учебной и методической литературе с этой целью для учащихся предлагались самые разнообразные знаки: многоточие, обведенная пустая клетка, звездочки, вопросительный знак и т. п. Но так как все эти знаки полагается использовать в другом назначении, то для записи неизвестного числа следует использовать общепринятый для этих целей знак — букву. В дальнейшем буква как математический символ используется в начальном обучении математике также для записи обобщенных чисел, то есть когда имеются в виду не одно какое-либо целое неотрицательное число, а любое число. Такая необходимость возникает, когда надо выразить свойства арифметических действий. Буквы необходимы для обозначения величин и записи формул, отражающих зависимости между величинами, для обозначения точек, отрезков, вершин геометрических фигур.

В I классе учащиеся применяют букву с целью — обозначения неизвестного искомого числа. Учащиеся знакомятся с написанием и чтением некоторых латинских букв, применяя их сразу для записи примеров с неизвестным числом (простейшие уравнения).

Учащимся показывается, как перевести на язык математических символов задание, выраженное словесно: «К неизвестному числу прибавили 2 и получили 6. Найти неизвестное число». Учитель объясняет, как записать эту задачу: обозначить неизвестное число буквой х, затем показать при помощи знака +. что к неизвестному числу прибавили 2 и получили число, равное 6, что и записать, используя знак равенства: х + 2 = 6. Теперь надо выполнять действие вычитания, чтобы по сумме двух слагаемых и одному из них найти другое слагаемое.

Основная работа с использованием буквы как математического символа выполняется в последующих классах.

При введении буквенных выражений важную роль в системе упражнений играет умелое комбинирование индуктивного и дедуктивного методов. В соответствии с этим упражнения предусматривают переходы от числовых выражений к буквенным и, обратно, от буквенных выражений к числовым.

а + Ъ (а плюс Ъ) также математическое выражение, только в нем слагаемые обозначены буквами: каждая из букв обозначает любые числа.

Придавая буквам различные числовые значения, можно получить много, сколько угодно числовых выражений.

В работе над такими выражениями раскрывается понятие постоянной.

Использование буквенной символики способствует повышению уровня обобщения знаний, приобретаемых учащимися начальных классов, и готовит их к изучению систематического курса алгебры в следующих классах.

Равенства, неравенства.

В практике обучения в начальных классах числовые выражения с самого начала рассматриваются в неразрывной связи с числовыми равенствами и неравенствами.

В математике числовые равенства и неравенства делятся на истинные и ложные. В начальных классах вместо этих терминов употребляют слова «верные» и «неверные».

Задачи изучения равенств и неравенств в начальных классах заключаются в том, чтобы научить учащихся практически оперировать равенствами и неравенствами: сравнивать числа, сравнивать арифметические выражения, решать простейшие неравенства с одним неизвестным, переходить от неравенства к равенству и от равенства к неравенству.

Понятия о равенствах, неравенствах раскрываются во взаимосвязи. При изучении, арифметического материала. Знаками «>», «<», «=» соединяются не любые два числа, не любые два выражения, а лишь те, между которыми существуют указанные отношения.

Сравнение чисел осуществляется сначала на основе сравнения множеств, которое выполняется, с помощью установления взаимно однозначного соответствия.

Далее при изучении нумерации чисел в пределах 100, 1000, а также нумерации многозначных чисел сравнение чисел осуществляется либо на основе сопоставления их по месту в натуральном ряду, либо на основе разложения чисел по десятичному составу и сравнения соответствующих разрядных чисел.

Сравнение величин сначала выполняется с опорой на сравнение самих предметов по данному свойству, а потом осуществляется на основе сравнения числовых значений величин.

Переход к сравнению выражений осуществляется постепенно. Сначала в процессе изучения сложения и вычитания в пределах 10 учащиеся упражняются в сравнении выражения и числа (числа и выражения).

Выражение и число (число и выражение) учащиеся сравнивают, не прибегая к операциям над множествами (подумай — поставь знак — объясни — проверь вычислением).

Сравнить два выражения — значит, сравнить их значения. Сначала выполняются вычисления, затем рассматриваются задания на основе рассуждений с опорой на обобщение.

Термины «решить неравенство», «решение неравенства» не вводятся в начальных классах.

Уравнения.

Впервые с уравнением учащиеся знакомятся в первом классе после того, как они познакомились с зависимостью между компонентами сложения. Здесь учащийся воспринимает уравнение как равенство, которое справедливо при определенном значении пока неизвестного числа. Выдвигается требование — найти такое значение буквы, обозначающей неизвестное. Чтобы составить уравнение, достаточно задание, выраженное словесно, записать с помощью математических символов.

В соответствии с программой в начальных классах рассматриваются уравнения первой степени с одним неизвестным вида: 7+х=10,х-3=10 + 5,х*(17-10) = 70,х:2-г10 = 30.

Неизвестное число сначала находят подбором, а позднее на основе знания связи между результатом и компонентами арифметических действий (т.е. знания способов нахождения неизвестных компонентов). Найти неизвестное число (корень) — значит решить уравнение.

С целью формирования умений решать уравнения предлагают разнообразные упражнения:

1) Решите уравнения и выполните проверку.

2) Выполните проверку решенных уравнений, объясните ошибки в

неверно решенных уравнениях.

3) Составьте уравнения с числами х, 7, 10, решите и проверьте решение.

4) Из заданных уравнений выберите и решите те, в которых неизвестное

число находят вычитанием (делением).

После того как учащиеся освоят решение простейших уравнений, уравнения усложняются в том отношении, что:

1) в правой части дается выражение: х+10=30-7;

2) один из компонентов задан выражением к + (18— 15) = 24;

3) один из компонентов задан выражением, причем в него входит

неизвестное (73 — В) + 31 = 85

Для решения таких уравнений необходимы знания порядка действий в выражении, а также умения выполнять простейшие преобразования выражений. Далее вводятся уравнения, содержащие действия первой и второй ступени.

Для овладения приемом решения этих уравнений в начальных классах учащемуся необходимо в первую очередь научиться левую часть представить в виде двух компонентов, в результате действий с которыми была получена правая часть, и разобрать состав каждого компонента.

При обучении решения уравнений важно вырабатывать навык проверки его корня, то есть найденного значения буквы. Здесь учащиеся должны в уравнение вместо буквы подставить ее значение, отдельно вычислить левую и правую части и сравнить полученные результаты. Отношение равенства этих результатов является основанием для заключения, что найденное число удовлетворяет условиям уравнения.



Поделиться:


Последнее изменение этой страницы: 2016-08-26; просмотров: 2694; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.224.73.150 (0.007 с.)