Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Допускаемые напряжения для сварных швов

Поиск

Допускаемые напряжения для сварных швов при статической на­грузке определяют по табл. 4.1 в зависимости от допускаемого напряже­ния [σ]р основного металла на растяжение:

(4.3)

где σт — предел текучести основного металла; [s]T допускаемый ко­эффициент запаса прочности; [s]T= 1,35...1,6 —для низкоуглеродистой и [s]T = 1,5...1,7 — для низколегированной стали.

Рекомендации по конструированию сварных соединений

1. Из-за дефектов сварки на концах сварного шва (в местах зажи-гания и гашения дуги) минимальная длина шва должна быть не менее 30 мм.

2. В нахлесточных соединениях (см. рис. 4.4, а) длину перекрытия принимают не менее 4δ, где δ — минимальная толщина свариваемых деталей.

3. Длина лобовых швов не ограничивается. Длина фланговых швов ограничивается: lфЛ<50k. Это связано с возрастанием неравномерности

Рис. 4.8. Пример сварной конструкции

распределения напряжений по длине шва с увеличением его длины. На концах шва напряжения больше, чем в середине.

4. Сварные швы располагают так, чтобы напряжения в них были
одинаковыми. Исходя из этого, при конструировании соединения угол­
ков с косынками (рис. 4.8) длины фланговых швов определяют из
решения системы уравнений:

где l фл — суммарная длина фланговых швов по формуле (4.2). Имеем

и, следовательно,

(4.4)

5. В конструкциях, подверженных действию переменных нагрузок, при­менение нахлесточных соединений нежелательно, так как они характери­зуются значительной концентрацией напряжений. По этой причине неследует применять «усиливающие» накладки в стыковых соединениях.

Пример Рассчитать сварное соединение уголка с косынкой, нагруженное силой F= 30 кН (см. рис. 4.8). Материал уголка и косынки — сталь марки СтЗ (от = 220 Н/мм2). Сварка ручная дуговая электродом типа Э50А. Размеры уголка: А = 32 мм, 3) = 9,4 мм, d=4 мм.

Решение. 1. Катет сварного шва. В нахлесточных соединениях угловыми швами катет сварного шва принимают равным толщине свариваемых деталей (см. § 4.2). Принимаем k = d=4 мм. Расчетная высота опасного сечения шва h-u,lk.

2. Допускаемое напряжение среза. По формуле (4.3) находим допускаемые напряже­
ния основного металла на растяжение при [s]T = 1,5:

По табл. 4.1 допускаемые напряжения среза для сварных соединений

3. Суммарная длина фланговых швов [формула (4.2)]:

 

4. Длины фланговых швов [формула (4.4)):

Паяные соединения

Паяные соединения — неразъемные соединения, образуемые сила­ми молекулярного взаимодействия между соединяемыми деталями и присадочным материалом, называемым припоем.

Припой — сплав (на основе олова, меди, серебра) или чистый металл, вводимый в расплавленном состоянии в зазор между соединя­емыми деталями. Температура плавления припоя ниже температуры плавления материалов деталей.

По конструкции паяные соединения подобны сварным (рис. 4.9, аж). Преимущественное применение имеют соединения нахлесточные. Сты­ковые и тавровые соединения применяют при малых нагрузках.

Рис. 4.9. Основные типы паяных соединений:

а — стыковое; б— нахлесточное; в — косостыконое; г —тавровые; д — с одной накладкой; е — телескопическое; ж — сотовая конструкция

В отличие от сварки пайка позволяет соединять не только однород­ные, но и разнородные материалы: черные и цветные металлы, сплавы, керамику, стекло и др.

При пайке поверхности деталей очищают от окислов и обезжири­вают с целью получения хорошей смачиваемости поверхностей припо­ем и качественного заполнения им зазоров. Нагрев припоя и деталей в зависимости от их размеров осуществляют паяльником, газовой горелкой, ТВЧ, в термических печах и др. Для уменьшения вредного влияния окисления поверхностей деталей при пайке применяют флюсы (на основе буры, канифоли, хлористого цинка), а также паяют в вакууме или в среде нейтральных газов (аргона). Расплавленный при­пой растекается по нагретым поверхностям стыка деталей и при ох­лаждении затвердевает, прочно соединяя детали.

Размер зазора в стыке определяет прочность соединения. При малом зазоpe лучше проявляется эффект капиллярного течения припоя, про­цесс растворения материала деталей в расплавленном припое распро-еграняется на всю толщину паяного шва (прочность образующегося раствора на 30...60 % выше прочности припоя).

Размер зазора принимают 0,01...0,25 мм в зависимости от припоя (легкоплавкий или тугоплавкий) и материала деталей.

Припои с температурой плавления до 400 °С называют легкоплавки­ми. Наиболее широкое применение имеют оловянно-свинцовые, оло-вянно-свинцовые сурьмянистые припои (марок ПОС90, ПОС61). Эти припои не следует применять для соединений, работающих при тем­пературе свыше 100 "С или подверженных действию ударных нагрузок.

Припои с температурой плавления свыше 400 0С называют туго­плавкими (серебряные или на медной основе). Припои на медной основе отличаются повышенной хрупкостью, их приме­няют для соединения деталей, нагруженных статической нагрузкой. Се­ребряные припои (марок ПСр40, ПСр45) применяют для ответствен­ных соединений. Они устойчивы против коррозии и пригодны для соеди­нения деталей, воспринимающих ударную и вибрационную нагрузки.

Достоинством паяных соединений является возможность соедине­ния разнородных материалов, стойкость против коррозии, возмож­ность соединения тонкостенных деталей, герметичность, малая кон­центрация напряжений вследствие высокой пластичности припоя. Пайка позволяет распаивать соединение, а также получать соединения дета­лей в скрытых и труднодоступных местах конструкции.

Недостатком пайки по сравнению со сваркой является сравнитель­но невысокая прочность, необходимость малых и равномерно распре­деленных зазоров между соединяемыми деталями, что требует их точ­ной механической обработки и качественной сборки, а также предва­рительной обработки поверхностей перед пайкой.

Применение паяных соединений в машиностроении расширяется в связи с внедрением пластмасс, керамики и высокопрочных сталей, которые плохо свариваются. Пайкой соединяют листы, стержни, топ­ливные и масляные трубопроводы, лопатки турбин и др. Ее широко применяют в автомобилестроении (радиаторы и др.) и самолетостро­ении (обшивка из тонких стальных листов с сотовым промежуточным заполнением, см. рис. 4.9, ж). Пайка является одним из основных видов соединений в радиоэлектронике и приборостроении. Процессы пайки поддаются механизации и автоматизации.

Расчет на прочность паяных соединений выполняют на сдвиг мето­дами сопротивления материалов. Надо учитывать, что в нахлесточном соединении площадь расчетного сечения равна площади контакта де­талей. Для нахлесточных соединений деталей из низкоуглеродистой стали, полученных оловянно-свинцовыми припоями (марки ПОС40), допускаемое напряжение на сдвиг [τ]с = 60 Н/мм2.

Клееные соединения

Клееные соединения применяют для деталей из металла и неметал­лических материалов. Это соединение деталей неметаллическим веще­ством (клеем) посредством поверхностного схватывания и межмолеку­лярной связи в клеящем слое.

Достоинства клееных соединений — возможность соединения дета-лей из однородных и неоднородных материалов, герметичность, стой­кость против коррозии, возможность соединения очень тонких листо-выx деталей, малая концентрация напряжений и высокое сопротивле­ние усталости, малая масса.

Недостатки — сравнительно невысокая прочность, необходимость тщательной подготовки поверхностей под склеивание, снижение несу­щей способности при повышенных температурах.

На прочность клееных соединений влияют характер нагрузки, кон­струкция соединения, тип и толщина слоя клея (при увеличении тол­щины прочность падает), технология склеивания и время эксплуата­ции (с течением времени прочность некоторых клеев уменьшается).

Технология склеивания деталей состоит из ряда последовательных операций: взаимной пригонки склеиваемых поверхностей, получения шероховатости (обработкой пескоструйным аппаратом или зачисткой наждачной шкуркой), удаления пыли, обезжиривания (растворителем); нанесения клея на подготовленные поверхности, сборки и выдержки соединения при требуемых давлении и температуре.

Шероховатость увеличивает поверхность склеивания. Оптимальная толщина слоя клея 0,05...0,15 мм (зависит от вязкости клея и давления при склеивании). Длительная выдержка при склеивании является не­достатком этого соединения.

На практике применяется большое количество марок клея, отли­чающихся хорошими физико-механическими и технологическими свой­ствами (клеи марок БФ, ВК-1, ВК-2, МПФ-1 и др.).

Наибольшее применение в машиностроении получили клееные со­единения, работающие на сдвиг. Поэтому предпочтительнее нахлесточ-пые соединения.

Расчет на прочность клееных соединений производят на сдвиг мето­пами сопротивления материалов. Допускаемое напряжение на сдвиг |τ|с= 10...30 Н/мм2.

Клееными соединениями создают новые конструкции (сотовые, слоистые), отдельные зубчатые колеса соединяют в общий блок, по­вышают прочность сопряжения зубчатых венцов со ступицами, ступиц с валами, закрепляют в корпусе неподвижное центральное зубчатое колесо 4 планетарной передачи (см. рис. 16.3), наружное кольцо под­шипника качения, стопорят резьбовые соединения, крепят пластинки режущего инструмента и др. Для повышения прочности применяют комбинированные соединения: клееклепаные, клеесварные (с точеч­ной сваркой), клеерезьбовые.

Контрольные вопросы

1. Какие преимущества имеют сварные соединения? Область применения сварных соединений.

2. Как образуется сварной шов? Типы сварных швов.

3. Какие факторы учитывают при выборе допускаемых напряжений для расчетов на прочность сварных соединений?


4. Как рассчитывают стыковое сварное соединение, нагруженное растягивающей силой?

5. Каковы достоинства и недостатки паяных соединений по сравнению со сварными? Область их применения.

6. Каковы достоинства и недостатки клееных соединений по сравнению со сварны­ми? Область их применения.



Поделиться:


Последнее изменение этой страницы: 2016-04-19; просмотров: 1633; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.118.217.168 (0.009 с.)