Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Классификация органических реакций и их компонентов.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Любая химическая реакция включает разрыв (расщепление) связей между атомами и образование новых связей. В органической химии принято выделять два типа реагирующих частиц: субстрат — вещество, в котором происходит разрыв старых и образование новых связей с участием атома углерода, и реагент — вещество, под действием которого происходят изменения в субстрате. (Принято говорить об атакующем воздействии реагента на субстрат.) Например, в реакции расщепляется связь С—Вr и образуется связь С—О; в качестве субстрата выступает , в качестве реагента - . Реакции с участием органических соединений подчиняются тем же законам, что и реакции в неорганической химии, хотя и имеют некоторые специфические особенности. Во-первых, разрыв связей может происходить по-разному с образованием различных промежуточных соединений. Во-вторых, изменению в ходе реакции подвергается, как правило, не вся молекула субстрата, а ее небольшая часть, включающая функциональную группу, кратную связь и т.п., называемая реакционным центром молекулы. Появление реакционных центров обусловлено неравномерным распределением электронной плотности в молекуле. В неорганической химии в реакциях обычно участвуют ионы, поэтому они протекают очень быстро, а иногда — мгновенно. В реакциях органической химии обычно участвуют молекулы, при этом разрываются одни ковалентные связи и образуются новые. Эти реакции протекают значительно медленнее, чем ионные, и для их успешного осуществления часто необходимы жесткие условия: повышенная температура, повышенное давление и катализаторы. В отличие от неорганических, органические реакции редко приводят к высокому выходу продукта (более 80 %), так как обычно протекает не одна, а несколько реакций. Поэтому в органической химии используются не химические уравнения, а схемы реакций, в которых обычно не приводятся стехиометрические соотношения между участниками, но указываются условия проведения реакции. Например, реакция этилена с водой, протекающая при повышенной температуре, повышенном давлении и в присутствии кислотного катализатора, записывается так:
В ходе большинства биохимических реакций изменению подвергается не вся молекула органического соединения, как это обычно бывает с неорганическими веществами, а только ее часть, которая называется реакционным центром. Реакционные центры в зависимости от природы и структуры имеют разную степень сродства к атакующим частицам, и их можно подразделять в зависимости от типа органической реакции. Реакции в органической химии принято классифицировать по механизму их протекания и по конечному результату химического превращения. По механизму протекания реакции делятся на гетеролитические (электпрофилъно-нуклеофилъные) и гомолитические (свободнорадикальные). Поскольку названия «электрофильно-нуклеофильные» или «свободнорадикальные» указывают на характер реагирующих частиц, то они используются в учебнике для харатеристики механизма реакции. Электрофильно-нуклеофильные реакции сопровождаются гетеролизом полярной ковалентной связи между фрагментами (Аδ+ — Вδ–), причем так, что ее общая электронная пара сильно смещается к одному фрагменту молекулы Вδ–, превращая его в нуклеофил, а у другого фрагмента возникает дефицит электронов (Аδ+ ), превращая его в электрофил: где А и В обозначают атомы или группы атомов, связанные полярной ковалентной связью. При полном гетеролизе связь разрывается с образованием катиона А+ - сильного электрофила — и аниона В– - сильного нуклеофила. Процесс гетеролиза ковалентной связи можно рассматривать как расщепление этой связи по донорно-акцепторному механизму. Гетеролиз ковалентной связи происходит и в молекуле субстрата, и в молекуле реагента. Результатом электрофильно-нуклеофильной реакции является взаимодействие между фрагментами реагента и субстрата, проявляющими противоположные свойства. Электрофилами называются частицы или фрагменты молекул, содержащие свободную, доступную орбиталь и имеющие недостаток электронной плотности, которые в результате реакции образуют связь с новым нуклеофилом, акцептируя у него оба электрона на свою вакантную орбиталь. Электрофилами являются положительно заряженные частицы или фрагменты молекул, проявляющие высокое сродство к электронной паре нуклеофила: Н-электрофил: протон (Н+); С-электрофилы: карбкатионы (R3С ) или соединения с сильнополярной связью , , О-электрофилы: ; S-электрофилы: ; N-электрофилы: , ; Галогены, атомы которых несут частичный положительный заряд: Галδ+—Галδ-. В электрофильно-нуклеофильных реакциях электрофил выступает акцептором электронной пары нуклеофила. К электрофилам также относятся все кислоты (доноры протона) при кислотно-основном взаимодействии, все окислители (акцепторы электронов) при окислительно-восстановительном взаимодействии и все комплексоообразователи (акцепторы электронов) в реакциях комплексообразования. Нуклеофилами называются частицы или фрагменты молекул, содержащие подвижную электронную пару, которые в результате реакции образуют связь с новым электрофилом, отдавая ему эту электронную пару. Нуклеофилами являются отрицательно заряженные частицы или фрагменты молекул, проявляющие высокое сродство к электрофилу: С-нуклеофилы: карбанионы (R3Сө), металлоорганические соединения (R3C δ-—М δ+), ненасыщенные соединения (R2C=CR2, RC=CR); N-нуклеофилы: H3, R H2, R2 H, R3 ; О-нуклеофилы: H2Ö, R— Ö—R', HÖ-, RÖ δ- —M δ+; S-нуклеофилы: H2 , R— —R', H -, R δ- —M δ+; Галогенид-анионы: F-, Cl-, Br-, I-. В электрофильно-нуклеофильных реакциях нуклеофил выступает донором электронной пары. К нуклеофилам также относятся все основания при кислотно-основном взаимодействии, все восстановители при окислительно-восстановительном взаимодействии и все лиганды в реакциях комплексообразования. Таким образом, используемые в органической химии понятия электрофил и нуклеофил имеют более широкий смысл, чем понятия кислота и основание, окислитель и восстановитель, комплексообразователь и лиганд, используемые в неорганической химии. Однако суть электрофильно-нуклеофильных реакций, подобно кислотно-основным, окислительно-восстановительным и реакциям комплексообразования, также заключается в донорно-ак-цепторном взаимодействии компонентов с противоположными свойствами. Электрофильно-нуклеофильные свойства органических соединений проявляются прежде всего в их способности вступать в реакции: кислотно-основные, окислительно-восстановительные и комплексообразования. Органические соединения вступают также и в другие электрофильно-нуклеофильные реакции, которые нельзя отнести к вышеуказанным. В основном именно для этих реакций в данном учебнике будет использоваться термин «электрофильно-нуклеофильная реакция». Электрофилы и нуклеофилы характеризуются различной поляризуемостью и качественно подразделяются на жесткие (низкая поляризуемость) и мягкие (высокая поляризуемость). Жесткие электрофилы имеют сравнительно большой положительный заряд, а их свободная орбиталь, на которую перейдет электронная пара нуклеофила, имеет низкий уровень энергии. Жесткими электрофилами являются: Н+, Na+, К+, Mg2+, Ca2+, Mn2+, Al3+, A1C13, BF3, R =O Жесткие нуклеофилы хорошо удерживают свою электронную пару, поскольку ее орбиталь расположена близко к ядрам атомов и имеет низкий уровень энергии. Донорными атомами в жестких нуклеофилах могут быть кислород, азот, хлор, фтор. Жесткими нуклеофилами являются: Н2О, ОН-, ROH, RO-, ROR, RCOO-, NH3, RNH2, RNH-, Cl-, F-. Жесткие нуклеофилы трудно окисляются. Мягкие электрофилы содержат акцепторные атомы большого размера с невысокой электроотрицательностью и с малым положительным зарядом. Их свободная орбиталь, принимающая электронную пару нуклеофила, имеет высокий уровень энергии. Мягкими электрофилами являются: Hg2+, Cu+, Ag+, —I δ+, -Br δ+ Мягкие нуклеофилы плохо удерживают свою электронную пару, поскольку ее орбиталь удалена от ядер атомов и имеет высокий уровень энергии. Донорными атомами в мягких нуклеофилах выступают атомы серы, иода и углерода. Мягкими нуклеофилами являются: RS-, RSR, RSH, I-, RC=CR, R2C=CR2 Мягкие нуклеофилы довольно легко окисляются. Существуют электрофилы и нуклеофилы, которые занимают промежуточное положение. Электрофилы: Cu2+, Fe2+, Zn2+, R3C+, C6H Нуклеофилы: Br~, C6H5 H2. В соответствии с принципом Пирсона более стабильная связь образуется при взаимодействии жесткого электрофила с жестким нуклеофилом или мягкого электрофила с мягким нуклеофилом. На основе этого принципа можно качественно оценить реакционную способность при взаимодействии нуклеофилов и электрофилов различного типа.
|
||||||
Последнее изменение этой страницы: 2016-12-10; просмотров: 639; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.119.116.77 (0.01 с.) |