ТОП 10:

РАЗВИТИЕ МАТЕМАТИЧЕСКОГО МЫШЛЕНИЯ МЛАДШИХ ШКОЛЬНИКОВ С ПОМОЩЬЮ РЕШЕНИЯ НЕСТАНДАРТНЫХ ЗАДАЧ



 

Соловьёва А.А., студентка 4 курса

(г. Витебск, УО «ВГУ им. П.М. Машерова»)

Научный руководитель – Левчук З.К., кандидат педагогических наук, доцент

 

Главная задача обучения математике, причём с самого начала, с первого класса, – учить рассуждать, учить мыслить.

А.А. Столяр.

 

Актуальность исследования заключается в том, что в современное время дети учатся по развивающим технологиям, где логическое мышление является основой. Многочисленные наблюдения педагогов, исследования психологов убедительно показали, что ребенок, не научившийся учиться, не овладевший приемами мыслительной деятельности в начальных классах школы, в средних классах обычно переходит в разряд неуспевающих.

Изучением мышления, процесса мыслительного развития занимались такие видные ученые, как Г.Айзенк, Ф.Гальтон, Дж. Кеттелл, К.Мейли, Ж.Пиаже, Ч.Спирмен и др. В отечественной науке свой вклад в изучении этого вопроса внесли С.Л.Рубинштейн, Л.С.Выготский, Н.А.Подгорецкая, П.П.Блонский, А.В.Брушлинский, В.В.Давыдов, А.В.Запорожец, Г.С.Костюк, А.Н.Леонтьев, А.Р.Лурия, А.И.Мещеряков, Н.А.Менчинская, Д.Б.Эльконин, З.А.Зак, А.М.Матюшкин, П.Я.Гальперин и другие.

Одним из важных направлений в решении этой задачи выступает создание в начальных классах условий, обеспечивающих полноценное умственное развитие детей, связанное с формированием устойчивых познавательных интересов, умений и навыков мыслительной деятельности, качества ума, творческой инициативы и самостоятельности в поисках способов решения задач. Однако такие условия обеспечиваются в начальном обучении пока не в полной мере, поскольку все еще распространенным приемом в практике преподавания является организация учителем действий учащихся по образцу: излишне часто учителя предлагают детям упражнения тренировочного типа, основанные на подражании и не требующие проявления выдумки и инициативы.

Новые подходы к совершенствованию учебно-воспитательного процесса с целью формирования всесторонне развитой и творчески мыслящей личности младшего школьника во многом зависят от умения ими решать нестандартные задачи. До сих пор в обучении математике не преодолены стереотипы, которые мешают достижению поставленной перед школой цели гармонического развития личности учащегося. Наблюдается противоречие между требованиями науки к обучению и практической работай. Исходя из этого возникает проблема: как повысить возможности уроков математики для развития мышления школьников?

Наиболее доступным средством решения этой проблемы будет введение в курс начальной математики нестандартных задач. Именно в ходе решения математических задач самым естественным способом можно формировать у школьников элементы творческого математического мышления наряду с реализацией непосредственных целей обучения математике. [4, с. 6]

Значительное место вопросу обучения младших школьников нестандартным задачам уделял в своих работах известнейший отечественный педагог В.А. Сухомлинский. Суть его размышлений сводится к изучению и анализу процесса решения детьми логических задач, при этом он опытным путём выявлял особенности мышления детей.

Традиционное обучение математике имеет дело лишь с задачами, формирующими у школьников определённые операционные навыки по данному образу-стандарту. Встречаясь же с нестандартной задачей, учащиеся часто не знают, как её решать, не делая даже попыток отыскать это решение. И только участие в математических олимпиадах, понимание того факта, что нестандартная задача не означает её недоступность для решения; накопление опыта в общих приёмах решения задач позволяет школьникам решать их успешно.[1, с. 22]

Нестандартная задача - это задача, решение которой для данного ученика не является цепью известных действий. [2, с. 5] Поэтому понятие нестандартной задачи относительно. Успех в решении зависит не только от того, решались ли раньше подобные задачи, сколько от опыта их решения вообще, от числа полностью разобранных решений с помощью учителя с подробным анализом всех интересных аспектов задачи. Нерешённая задача подрывает у учащихся уверенность в своих силах и отрицательно влияет на развитие интереса к решению задач вообще, поэтому учитель должен проследить за тем, чтобы поставленные перед школьниками нестандартные задачи были решены. Но вместе с тем решение нестандартных задач с помощью учителя – это вовсе не то, чего следует добиваться. Цель постановки в школе нестандартных задач – научить школьников решать их самостоятельно.

Нестандартные задачи формируют у школьников высокую математическую активность, качества, присущие творческой личности: гибкость, оригинальность, глубину, целенаправленность, критичность мышления. Нестандартные задачи всегда подаются в увлекательной форме, они прогоняют интеллектуальную лень, вырабатывают привычку к умственному труду, воспитывают настойчивость в преодолении трудностей.

Нестандартные задачи делятся на 2 категории:

1 категория. Задачи, примыкающие к школьному курсу математики, но повышенной трудности – типа задач математических олимпиад.

2 категория. Задачи типа математических развлечений.

Первая категория нестандартных задач предназначается в основном для школьников с определившимся интересом к математике; тематически эти задачи обычно связаны с тем или иным определённым разделом школьной программы. Относящиеся сюда упражнения углубляют учебный материал, дополняют и обобщают отдельные положения школьного курса, расширяют математический кругозор, развивают навыки в решении трудных задач.

Вторая категория нестандартных задач прямого отношения к школьной программе не имеет и, как правило, не предполагает большой математической подготовки. Это не значит, однако, что во вторую категорию задач входят только лёгкие упражнения. Здесь есть задачи с очень трудным решением и такие задачи, решение которых до сих пор не получено.[2, с. 57]

В работах Кордемского Б.А. отмечается, что «нестандартные задачи, поданные в увлекательной форме, вносят эмоциональный момент в умственные занятия. Но связанные с необходимостью всякий раз применять для их решение заученные правила и приёмы, они требуют мобилизации всех накопленных знаний, приучают к поискам своеобразных, не шаблонных способов решения, обогащают искусство решения красивыми примерами, заставляют восхищаться силой разума»[3, стр. 17]

К рассматриваемому типу задач относятся:

- разнообразные числовые ребусы и головоломки на смекалку;

- логические задачи, решение которых не требует вычислений, но основывается на построении цепочки точных рассуждений;

- задачи, решение которых основывается на соединении математического развития и практической смекалки: взвешивание и переливания при затруднительных условиях;

- математические софизмы – это умышленное, ложное умозаключение, которое имеет видимость правильного;

- задачи-шутки;

- комбинаторные задачи, в которых рассматриваются различные комбинации из заданных объектов, удовлетворяющие определённым условиям.

Проводя опытно-экспериментальную работу в течение одного года с одним и тем же контингентом учащихся, у меня появилась возможность проследить тенденцию развития способностей к решению нестандартных задач определённых видов. Эта тенденция наглядно демонстрируется в таблице 1.

 

Решили верно (в %) Вид задачи 3 класс середина учебного года 3 класс конец учебного года
Логические Ребусы, головоломки Взвешивание, переливание Софизмы Задачи-шутки Комбинаторные      

Из анализа этой таблицы можно сделать вывод о том, что учащиеся овладели на высоком уровне приёмами решения логических задач и задач-шуток. В то же время наблюдаются очень низкие результаты решения математических софизмов, что говорит о недостаточной сформированности таких качеств мышления, как гибкость и критичность и, может быть, ещё о том, что детям этого возраста пока не доступно решение задач подобной сложности. Не очень высокие данные о верном решении головоломок, задач на измерение (взвешивание, переливание) свидетельствуют не о неумении решать эти нестандартные задачи, а о том, что на их решение нужно затратить ребёнку больше времени, но такими возможностями располагает не всякий урок математики, поэтому число учеников, достигало от 2 до 12 человек. Итоги решения подобных задач дома во время выполнения домашнего задания, мы сочли недостаточно достоверными и потому не включили эти данные в общий результат.

Но всё же наблюдается общая тенденция к повышению уровня математического мышления школьников, овладению ими основными способами решения нестандартных задач разных видов, что свидетельствует о подтверждении нашей гипотезы о том, что нестандартные задачи развивают математическое мышление в целом.

Проведённое исследование позволяет сделать вывод о том, что нестандартные задачи благоприятно влияют на развитие математического мышления младших школьников.

Кроме того, занимательная форма данных задач содействует развитию интереса учащихся начальных классов к математике, повышению их активности на уроке, предотвращает психическую усталость однообразной деятельностью.

 

Список цитированных источников:

1. Альперович, С.А. Активизация познавательной деятельности учащихся на уроках математики // Начальная школа. – 1979. - № 5. – С. 30 – 33.

2. Возлинская, М.В. Задачник. Нестандартная математика в школе. – М.: Лайда. – 1993. – 96 с.

3. Кордемский, Б.А. Очерки о математических задачах на смекалку. – М., 1958. – с. 115

4. Терентьева, Л.П. Решение нестандартных задач: учеб. пособие / Л. П. Терентьева. – Чебоксары: Чуваш. гос. пед. ун-т, 2002. – 35 с.

 

 







Последнее изменение этой страницы: 2016-09-17; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.205.176.100 (0.008 с.)