Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Метаболические функции печениСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Благодаря большому количеству ферментных систем печень играет ключевую роль в метаболизме углеводов, жиров, белков и других веществ (рис. 3/1-3). Метаболизм углеводов Конечными продуктами расщепления углеводов, поступающих в организм человека, являются глюкоза, фруктоза и галактоза, В печени фруктоза и галактоза превращаются в глюкозу, поэтому метаболизм глюкозы является общим конечным путем метаболизма всех углеводов. Во всех клетках энергия запасается в виде АТФ, который образуется в ходе анаэробного (гликолиз) или аэробного (цикл лимонной кислоты) расщепления глюкозы. В печени и жировой ткани расщепление глюкозы может также происходить по пентозофосфатному пути, что позволяет не только получить энергию, но и выработать кофактор, играющий важную роль в синтезе жирных кислот. Глюкоза, поступающая в кровь после еды, запасается в организме в форме гликогена. Если депо гликогена насыщены, то поступающая глюкоза превращается в жир. Гликоген является легкодоступным источником глюкозы. Необходимость превращения глюкозы в гликоген при запасании энергетического материала обусловлена тем, что накопление легко растворимой глюкозы в клетках могло бы привести к осмотическому шоку с последующим разрушением клеточной мембраны. Нерастворимый гликоген осмотически неактивен. Только печень и, в меньшей степени, скелетные мышцы способны запасать значительное количество гликогена. Инсулин потенциирует синтез гликогена, тогда как адреналин и глюкагон, напротив, способствуют гликогенолизу. Поскольку в печени содержится около 70 г гликогена, а потребление глюкозы составляет в среднем 150 г/сут, запасы гликогена истощаются через 24 ч голодания. Чтобы обеспечить непрерывное снабжение органов и тканей глюкозой после 24 ч голодания, необходим синтез глюкозы de novo (глюконеогенез).
Рис. 34-3. Основные пути метаболизма в печени. Хотя небольшое количество АТФ образуется в результате промежуточных реакций, подавляющее большинство молекул АТФ синтезируется путем окислительного фосфорилирования восстановленных форм никотинамидаденинадинуклеотида (НАД) и никотинамидаденинадинуклеотидфосфата Печень обладает уникальной способностью вырабатывать большое количество глюкозы из молочной и пировиноградной кислоты, аминокислот (в основном из аланина) и глицерола (образуемого в ходе метаболизма жиров). Нормальная концентрация глюкозы в крови поддерживается за счет глюконеогенеза в печени. Глюкокортикоиды, кате-холамины, глюкагон и тиреоидные гормоны потенциируют глюконеогенез, в то время как инсулин, напротив, ингибирует. Метаболизм жиров При насыщении депо углеводов избыток поступающих с пищей жиров (и белков) превращается в печени в жиры. Образующиеся жирные кислоты могут немедленно использоваться в качестве источника энергии или откладываться в жировой ткани или печени. В качестве источника энергии почти все клетки организма непосредственно утилизируют жирные кислоты, образующиеся из жиров пищи или синтезируемые в ходе промежуточного метаболизма углеводов и белков. Исключением являются эритроциты и мозговое вещество почки, где может утилизироваться только глюкоза. Нейроны в качестве источника энергии в обычных условиях используют только глюкозу, но через несколько дней голодания могут переключаться на жирные кислоты. Жирные кислоты, образующиеся из жиров, вначале окисляются до ацетилкоэнзима А (ацетил-KoA), который, в свою очередь, окисляется в цикле лимонной кислоты с образованием АТФ. Печень обладает высокой способностью к окислению жирных кислот, в результате чего из избытка ацетил-KoA образуется ацетоацетат. Ацетоацетат, высвобождаемый гепатоцитами, служит альтернативным и легкодоступным (ацетоацетат быстро превращается в ацетил-КоА) циркулирующим в крови энергетическим субстратом для других видов клеток. Глюкагон усиливает окисление жирных кислот, а инсулин ингибирует его. Ацетил-КоА, кроме того, используется печенью для образования холестерина и фосфолипидов, необходимых для синтеза клеточных мембран во всем организме. Синтезируемые в печени липопротеины имеют важное значение для транспорта липидов в крови. Метаболизм белков Печень играет ключевую роль в метаболизме белков. Если печень прекращает участвовать в метаболизме белков, то через несколько дней наступает смерть. Метаболизм белков осуществляется в несколько последовательных этапов: 1) дезаминиро-вание аминокислот; 2) образование мочевины (для элиминации аммиака, образующегося при дезами-нировании аминокислот); 3) взаимопревращения между заменимыми аминокислотами; 4) синтез белков плазмы. Дезаминирование необходимо для превращения избытка аминокислот в углеводы и жиры. В ходе ферментативных процессов (чаще всего трансами-нирование) аминокислоты превращаются в соответствующие кетокислоты, а в качестве побочного продукта реакции образуется аммиак. Дезаминирование аланина весьма важно для глюконеогенеза в печени. Хотя дезаминирование может происходить в почках (в основном это касается глутамина, см. главу 30), основным местом дезаминирования в организме является печень. За исключением аминокислот, имеющих разветвленный радикал (лейцин, изолейцин и валин), в печени подвергаются де-заминированию почти все аминокислоты, поступающие в организм с белками пищи. Аминокислоты с разветвленным радикалом подвергаются метаболизму преимущественно в скелетных мышцах. Аммиак, образующийся при дезаминировании аминокислот (а также вырабатывающийся под действием бактерий толстого кишечника и всасывающийся в кровь через стенку кишки), обладает высокой цитотоксичностью. В ходе нескольких последовательных реакций, проходящих в печени под действием ферментов, к двум молекулам аммиака присоединяется одна молекула СО2, в результате чего образуется мочевина. Образовавшаяся мочевина легко диффундирует из печени и затем выделяется через почки. Трансаминирование соответствующих кетокис-лот в печени приводит к образованию заменимых аминокислот и компенсирует их недостаток в пищевом рационе. Незаменимые аминокислоты в соответствии со своим названием не синтезируются посредством этого механизма и должны поступать извне. Почти все белки плазмы, за исключением имму-ноглобулинов, образуются в печени. В количественном отношении наиболее важными из этих белков являются альбумин и факторы свертывания. Альбумин обеспечивает поддержание нормального онкотического давления плазмы, а также является главным белком, осуществляющим связывание и транспорт гормонов и лекарственных препаратов. Следовательно, изменение концентрации альбумина оказывает влияние на концентрацию фармакологически активной, несвязанной фракции многих лекарственных препаратов. Все факторы свертывания, за исключением фактора VIII и фактора фон Виллебранда, образуются в печени. Витамин К является необходимым кофактором для синтеза протромбина (фактор II) и факторов VІІ, IX и X. В печени синтезируется холинэ-стераза плазмы (синоним: псевдохолинэстераза) — фермент, который гидролизует эфиры, в том числе некоторые местные анестетики и сукцинилхолин. Другие важные белки, образующиеся в печени, включают ингибиторы протеаз (антитромбин III, А2-ан-типлазмин и А1-антитрипсин), транспортные белки (трансферрин, гаптоглобин и церулоплазмин), белки системы комплемента, А1-гликопротеин, С-реак-тивный белок и сывороточный амилоид типа А.
|
||||
Последнее изменение этой страницы: 2016-04-20; просмотров: 636; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.15.4.52 (0.009 с.) |