Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
С чем связанна оптическая активность вещества.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Оптически активные вещества — среды, обладающие естественной оптической активностью. Оптическая активность — это способность среды (кристаллов, растворов, паров вещества) вызывать вращение плоскости поляризации проходящего через неё оптического излучения (света). Метод исследования оптической активности — поляриметрия. Оптически активные вещества подразделяются на 2 типа: Относящиеся к 1-му из них оптически активны в любом агрегатном состоянии (сахара, камфора, винная кислота), ко 2-му — активны только в кристаллической фазе (кварц, киноварь). У веществ 1-го типа оптическая активность обусловлена асимметричным строением их молекул, 2-го типа — специфической ориентацией молекул (ионов) в элементарных ячейках кристалла (асимметрией поля сил, связывающих частицы в кристаллической решётке). Кристаллы оптически активных веществ всегда существуют в двух формах — правой и левой; при этом решётка правого кристалла зеркально-симметрична решётке левого и не может быть пространственно совмещена с нею (т. н. энантиоморфные формы). Оптической активности правой и левой форм оптически активных веществ 2-го типа имеют разные знаки (и равны по абсолютной величине при одинаковых внешних условиях), поэтому их называется оптическими антиподами (иногда так называют и кристаллы оптически активных веществ 1-го типа). Молекулы правого и левого оптически активных веществ 1-го типа являются оптическими изомерами (см. Изомерия, Стереохимия), то есть по своему строению представляют собой зеркальные отражения друг друга. Их можно отличить одну от другой, в то время как частицы оптических антиподов (оптически активные вещества 2-го типа) просто неразличимы (идентичны). Физические и химические свойства чистых оптических изомеров совершенно одинаковы в отсутствие какого-либо асимметричного агента, реагирующего на зеркальную асимметрию молекул. Продукт химической реакции без участия такого агента — всегда смесь оптических изомеров в равных количествах, т. н. рацемат. Физические свойства рацемата и чистых оптических изомеров зачастую различны. Например, температура плавления рацемата несколько ниже, чем чистого изомера. Рацемат разделяют на чистые изомеры либо отбором энантиоморфных кристаллов, либо в химической реакции с участием асимметричного агента — чистого изомера или асимметричного катализатора, либо микробиологически. Последнее свидетельствует о наличии асимметричных агентов в биологических процессах и связано со специфическим и пока не нашедшим удовлетворительного объяснения свойством живой природы строить белки из левых оптических изомеров аминокислот — 19 из 20 жизненно важных аминокислот оптически активны. (Применительно к Оптически активным веществам 1-го типа термины «левый» и «правый» — L и D — условны в том смысле, что не соответствуют непосредственно направлению вращения плоскости поляризации в них, в отличие от этих же терминов — l и d — для Оптически активных веществ 2-го типа или терминов «левовращающий» и «правовращающий».) Физиологическое и биохимическое действие оптических изомеров часто совершенно различно. Например, белки, синтезированные искусственным путём из D-аминокислот, не усваиваются организмом; бактерии сбраживают лишь один из изомеров, не затрагивая другой; L-никотин в несколько раз ядовитее D-никотина. Удивительный феномен преимущественной роли только одной из форм оптических изомеров в биологических процессах может иметь фундаментальное значение для выяснения путей зарождения и эволюции жизни на Земле. Система электродов, примеры. Электродом в электрохимии называют такую систему, в которой токопроводящее вещество помещено в раствор или расплав электролита либо в газ. В качестве токопроводящего материала может быть использован твердый металл (в виде кусочка, пластины, проволоки, порошка, монокристалла), жидкий металл (ртуть, расплавы металлов, амальгамы сплавы ртути), различные соединения (оксиды, карбиды и др.), неметаллические материалы (уголь, графит и др.), полупроводники. Простейший пример металл, помещенный в водный раствор соли этого металла; его принято называть электродом 1-го рода. Рассмотрим такой пример: медная пластинка погружена в раствор сульфата меди (II). Соль в водном растворе диссоциирует на ионы: Существуют и другие типы электродов. Если на металл нанести слой его труднорастворимой соли или оксида и поместить в раствор, содержащий ионы этой соли (для оксида-ионы ОН-), то данная система будет электродом 2-го рода. Например, серебро, покрытое пленкой хлорида серебра AgCl и помещенное в раствор хлорида калия, представляет собой хлорсеребряный электрод. В такой системе устанавливается равновесие: Некоторые материалы (платина, графит) получили название инертных, так как они не могут посылать свои ионы в раствор. Такие материалы используют для создания окислительно-восстановительных или редокс-электродов. Например, платиновая пластинка, погруженная в раствор, содержащий сульфат железа (II) и сульфат железа (III). В этой системе ионы Fe2 + будут подходить к инертному металлу и отдавать ему электроны: Скачок титрования и факторы, влияющие на скачок титрования. Скачок титрования определяется резким изменением активности потенциалопределяющих ионов вблизи точки эквивалентности. Обнаружив скачок титрования (раствор при этом окрасится в слабо-желтый цвет), выполняют точное титрование с новой порцией анализируемого раствора, прибавляя титрант вблизи точки эквивалентности по 1 - 2 капли. Скачок титрования захватывает интервалы лакмуса, фенолфталеина и метилового оранжевого. Поэтому все три индикатора пригодны для данного случая. Последняя капля раствора щелочи изменяет рН настолько, что все три индикатора переходят из одной формы в другую и вследствие этого меняется цвет раствора. Величина скачка титрования зависит: -от константы устойчивости образующегося комплекса и концентрации реагентов. Реакция образования HgCb экзотермична, поэтому с ростом температуры константа устойчивости HgCb будет уменьшаться и, следовательно, будет уменьшаться скачок титрования. Устойчивость бромидных комплексов ртути намного выше, чем хлорид-ных (lgPHgBr 9 05; lgPHgBra 17 33), поэтому скачок титрова: ния при меркуриметрическом определении бромид-ионов будет больше, чем при определении хлорид-ионов. С уменьшением концентрации хлорида или бромида скачок титрования уменьшается. - от разности реальных потенциалов реагирующих окислительно-восстановительных пар, чем больше эта разность, тем больше скачок. Поэтому часто повышают концентрацию ионов водорода или проводят конкурирующую реакцию, чтобы повысить реальный потенциал одной из реагирующих пар и понизить другой. Случаи титрования. 4. Четыре случая титрования (условия титрования метода): 1) Сильная кислота + сильная щелочь HCl + NaOH ↔NaCl + H2O
H2O→ OH- + H+ (pH=7 в точке экв.) 2) Сильная кислота + Слабая щелочь HCl + NH4OH ↔ NH4Cl + H2O NH4++ NH4++H2O→NH4OH+H+ (pH <7) 3) Сильная щелочь + слабая кислота NaOH +CH3COOH↔NaCH3COO+H2O
CH3COO-+ H2O→OH-+CH3COOH (точка экв. pH>7) 4) Слабая кислота + Слабая щелочь NH4OH+CH3COOH↔NH4CH3COO+H2O
CH3COO-+H2O→CH3COOH+OH
|
||||
Последнее изменение этой страницы: 2017-01-19; просмотров: 630; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.16.50.1 (0.006 с.) |