Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Монохроматический свет, монохроматизация , монохроматизаторы фотометрия

Поиск

Тела, излучающие свет, называются источниками света. Раздел оптики, изучающий методы и приемы измерения действия видимого света на глаз человека, называется фотометрией.

Световой поток – величина, равная световой энергии (оцениваемой по зрительному ощущению), проходящей через заданную поверхность за единицу времени: где W – количество световой энергии, проходящей через заданную поверхность за время t. Единицей светового потока в СИ является люмен (лм).

Часть пространства, ограниченная конической поверхностью, называется телесным углом. Этот угол называется центральным телесным углом (рис. 1), если его вершина совмещена с центром сферы.

Телесный угол измеряется отношением, где S – площадь части поверхности сферы радиусом R, на которую опирается данный угол. Единицей измерения телесного угла служит стерадиан (ср). Полный пространственный угол равен ср.

Величина, измеряемая световым потоком, приходящимся на единицу телесного угла по заданному направлению, называется силой света источника где Ф – световой поток внутри достаточно малого телесного угла w. Сила света в СИ измеряется в канделах (кд).

Точечным источником света называется источник, размеры которого малы по сравнению с расстоянием до места наблюдения и который излучает свет равномерно во всех направлениях.

Полный световой поток от точечного источника света равен.

Освещенностью поверхности называется величина, равная световому потоку, падающему на единицу площади равномерно освещаемой поверхности.

В СИ освещенность измеряется в люксах (лк).

Первый закон освещенности: освещенность поверхности точечным источником прямо пропорциональна силе света источника и обратно пропорциональна квадрату расстояния от источника до освещаемой поверхности:

Второй закон освещенности: освещенность поверхности прямо пропорциональна косинусу угла падения лучей:

Объединенный закон освещенности: освещенность, создаваемая точечным источником света на некоторой площадке, прямо пропорциональна силе света источника и косинусу угла падения лучей и обратно пропорциональна квадрату расстояния до площадки от источника:

Освещенность поверхности, создаваемая несколькими источниками света, равна арифметической сумме освещенностей, создаваемых каждым источником в отдельности.

Если источник света нельзя считать точечным, то для его характеристики вводятся величины светимость и яркость.

Светимость определяется отношением светового потока, испускаемого поверхностью, к площади этой поверхности:

Единицей измерения светимости в СИ служит люкс. Если светимость тела обусловлена его освещенностью, то M = kE, где k – коэффициент отражения.

Яркостью светящейся поверхности в направлении наблюдения называется величина, равная отношению силы света к площади проекции этой поверхности на плоскость, перпендикулярную к этому направлению:

где – угол между нормалью к поверхности и направлением наблюдения. Яркость в СИ измеряется в нитах (нт).

Приборы, служащие для определения силы света одного источника на основании сравнения с силой света источника- эталона, называются фотометрами. Фотометры, приспособленные для непосредственного измерения освещенности, называются люксметрами.

Зависимость между оптической плотностью и толщиной слоя, выражаемая уравнением (9), называется законом Бугера – Ламберта. Зависимость (8) можно также вывести из величины поглощения в бесконечно малом слое, интегрированием на всю толщину кюветы. Для этого, аналогично сказанному выше, рассмотрим поглощение монохроматического света телом с параллельными стенками. Бесконечно тонкий слой поглощает долю энергии входящего в него параллельного монохроматического пучка света, пропорциональную толщине слоя db. Тогда относительное уменьшение интенсивности светового потока пропорционально толщине слоя db, через который прошёл световой поток:

где k – коэффициент, характеризующий поглощение света данным телом и зависящий от свойств данного тела. Этот коэффициент в широких пределах не зависит от интенсивности светового потока, только при очень больших её значениях k перестаёт быть постоянным и наблюдается зависимость k от I, т.е. возникает нелинейность поглощения и k перестаёт быть пропорциональным I. Проинтегрировав уравнение (10), получим:

Логарифмируя уравнение (10), получим:

остоянный коэффициент k аналогичен величине lg n из уравнения (9), т.е. k=lg n.

Из рассматриваемого закона вытекает:

отношение интенсивности светового потока, прошедшего через слой раствора, к интенсивности падающего светового потока не зависит от абсолютной интенсивности падающего светового потока;

если толщина слоя раствора увеличивается в арифметической прогрессии, интенсивность светового потока, прошедшего через него, уменьшается в геометрической прогрессии.
Моно­хроматизация света может быть осуществлена при помощи:
1) светофильтров;
2) призм;
3) дифракционных решеток.

Монохроматоры в фотометрии

Монохроматор — спектральный оптико-механический прибор, предназначенный для выделения монохроматического излучения. Принцип работы основан на дисперсии света.

Монохроматор состоит из следующих основных частей и узлов: входная спектральная щель, коллиматорный объектив, диспергирующий элемент (призма или дифракционная решётка), фокусирующий объектив и выходная спектральная щель, которая выделяет излучение, принадлежащее узкому интервалу длин волн. Возможность сканирования спектра (выбора нужного спектрального диапазона) обеспечивается путем поворота диспергирующего элемента. Для обеспечения точности поворот осуществляется с помощью специального передаточного механизма, управление последним в различных моделях может осуществляться вручную (последовательно перебирая необходимые длины волн) или автоматически (с помощью готового или собственного программного обеспечения).

Диспергирующими элементами монохроматора служат дисперсионные призмы и дифракционные решетки. Их угловая дисперсия D = ∆φ/∆λ вместе с фокусным расстоянием f объектива 4 определяют линейную дисперсию ∆l/∆f = Df (∆φ - угловая разность направлений лучей, длины волн которых 40отличаются на ∆λ; ∆l – расстояние в плоскости выходной щели, разделяющее эти лучи)

Также существуют двойные монохроматоры, представляющие собой последовательно сочленённые монохроматоры, в которых излучение из выходной щели первого монохроматора направляется во входную щель второго.

Монохроматоры как самостоятельные приборы применяются для аналитических целей в пламенной фотометрии.

Фотометрия — оптические методы исследования (анализа) вещества по спектрам светопоглощения, в диапазоне длин волн от ультрафиолетовых до инфракрасных лучей. Фотометрия применяется в аналитической химии для количественного анализа.

Пламенная фотометрия - оптический метод количественного элементного анализа по атомным спектрам испускания. Для получения спектров анализируемое вещество переводят в атомный пар в пламени. Термическая пламенная фотометрия - разновидность атомного эмиссионного спектрального анализа. В этом методе анализируемый раствор в виде аэрозоля вводят в пламя горючей смеси воздуха или N2O с углеводородами (пропаном, бутаном, ацетиленом). При этом растворитель и соли определяемых металлов испаряются и диссоциируют на своб. атомы. Атомы металлов и образовавшиеся в ряде случаев молекулы их оксидов и гидроксидов возбуждаются и излучают световую энергию. Из всего спектра испускания выделяют характерную для определяемого элемента аналит. линию (с помощью светофильтра или монохроматора) и фотоэлектрически измеряют ее интенсивность, которая служит мерой концентрации данного элемента.

 

89. Осаждаемая форма должна обладать достаточно малой растворимостью, без чего невозможно достижение практически полного осаждения определяемого иона (элемента). Как известно, растворимость малорастворимых электролитов характеризуется величиной их произведения растворимости (ПР).

Опыт показывает, что в случае бинарных электролитов (т. е. соединений, каждая молекула которых образует при диссоциации два иона, например BaSO4, AgCl и т. п.), практически полное осаждение может быть достигнуто лишь тогда, когда ПР осадка не превышает 10-8. Поэтому соединения с ПР > >10-8 в качестве осаждаемой формы в гравиметрическом анализе, как правило, не применяются. Но, конечно, возможность или невозможность применения для указанных целей того или иного соединения зависит также от точности данного анализа.

2. Желательно далее, чтобы структура осадка давала возможность с достаточной скоростью вести фильтрование и отмывание от примесей. Очень удобны для работы сравнительно крупнокри-сталлические осадки, так как они почти не забивают поры фильтра и, имея слабо развитую поверхность, мало адсорбируют посторонние вещества из раствора и легко отмываются от них *. Очень мелкокристаллические осадки, такие, как BaSO4 или CaC2O4, в этом отношении менее удобны. Кроме того, при неправильном проведении осаждения такие осадки легко проходят через поры фильтра, что в весовом анализе, конечно, совершенно недопустимо.

Аморфные осадки, особенно студенистые, вроде А1(0Н)з, имеют сильно развитую поверхность и потому значительно адсорбируют посторонние вещества из раствора и трудно отмываются от них. Кроме того, и фильтрование происходит очень медленно. Но если соединений, обладающих более удобными для анализа свойствами, не существует, то приходится работать и с такими осадками. В этом случае стараются создать условия, при которых уменьшаются неудобства, связанные с применением аморфных осадков.

3. Необходимо, чтобы осаждаемая форма достаточно легко и полностью превращалась в весовую форму.



Поделиться:


Последнее изменение этой страницы: 2017-01-19; просмотров: 370; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.32.238 (0.007 с.)