Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Относительный показатель преломления, формула и понятиеСодержание книги
Поиск на нашем сайте
Показатель преломления света - мера оптической плотности среды, равная отношению скорости света в вакууме к скорости света в среде. Показатель преломления света зависит от частоты света и от параметров состояния среды. Различают абсолютные и относительные показатели преломления. Абсолютный показатель преломления света - отношение скорости света в вакууме к фазовой скорости света в заданной среде. Абсолютный показатель преломления света показывает изменение скорости света при переходе в вакуум. Относительный показатель преломления света - отношение: - фазовой скорости света в первой среде; к - фазовой скорости света во второй среде. Численно относительный показатель преломления света равен отношению синуса угла падения к синусу угла преломления. Показатель преломления зависит от свойств вещества и длины волны излучения, для некоторых веществ показатель преломления достаточно сильно меняется при изменении частоты электромагнитных волн от низких частот до оптических и далее, а также может ещё более резко меняться в определённых областях частотной шкалы. По умолчанию обычно имеется в виду оптический диапазон или диапазон, определяемый контекстом. Существуют оптически анизотропные вещества, в которых показатель преломления зависит от направления и поляризации света. Такие вещества достаточно распространены, в частности, это все кристаллы с достаточно низкой симметрией кристаллической решётки, а также вещества, подвергнутые механической деформации. Показатель преломления можно выразить как корень из произведения магнитной и диэлектрических проницаемостей среды (надо при этом учитывать, что значения магнитной проницаемости и диэлектрической проницаемости для интересующего диапазона частот — например, оптического, могут очень сильно отличаться от статических значений этих величин). Для измерения показателя преломления используют ручные и автоматические рефрактометры. Отношение показателя преломления одной среды к показателю преломления второй называют относительным показателем преломления первой среды по отношению к второй. Для выполняется: где и — фазовые скорости света в первой и второй средах соответственно. Очевидно, что относительным показателем преломления второй среды по отношению к первой является величина, равная . Эта величина, при прочих равных условиях, обычно меньше единицы при переходе луча из среды более плотной в среду менее плотную, и больше единицы при переходе луча из среды менее плотной в среду более плотную (например, из газа или из вакуума в жидкость или твердое тело). Есть исключения из этого правила, и потому принято называть среду оптически более или менее плотной, чем другая (не путать с оптической плотностью как мерой непрозрачности среды). Луч, падающий из безвоздушного пространства на поверхность какой-нибудь среды, преломляется сильнее, чем при падении на неё из другой среды; показатель преломления луча, падающего на среду из безвоздушного пространства, называется его абсолютным показателем преломления или просто показателем преломления данной среды, это и есть показатель преломления, определение которого дано в начале статьи. Показатель преломления любого газа, в том числе воздуха, при обычных условиях много меньше, чем показатели преломления жидкостей или твердых тел, поэтому приближенно (и со сравнительно неплохой точностью) об абсолютном показателе преломления можно судить по показателю преломления относительно воздуха. Пептизация, коагуляция - понятие, их значимость для анализа и для каких осадков характерны. Пептизация, самопроизвольный распад агрегатов (комочков, хлопьев, сгустков), образованных скоплением слипшихся коллоидных частиц, на агрегаты меньших размеров или отдельные первичные частицы. Особенно наглядна пептизация студенистых осадков (коагелей), возникающих вследствие коагуляции золей и высокодисперсных суспензий. При пептизации происходит «коллоидное растворение» осадка — из коагулята вновь образуется золь. Внешнее сходство этого явления с растворением белков, расщепленных ферментом пепсином, определило происхождение термина. Пептизацию можно наблюдать при повышении температуры, удалении коагулирующих реагентов (см. Коагулянты) промыванием осадка. Наиболее характерна пептизация при введении в дисперсионную среду пептизаторов — веществ, способствующих дезагрегированию, то есть разъединению слипшихся частиц. Пептизаторами могут быть электролиты и поверхностно-активные вещества, вызывающие лиофилизацию (см. Лиофильность и лиофобность) поверхности частиц дисперсной фазы. Так, пептизация геля гидроокиси железа в водной среде возможна при добавлении небольших количеств хлорного железа, а каолин пептизируется гуминовыми кислотами. Перемешивание обычно ускоряет пептизацию. Процессы рекристаллизации и коалесценции, которые часто протекают в коллоидных осадках при старении, препятствуют пептизации, так как приводят к сращиванию частиц. Затруднена также пептизация осадков, выпавших при коагулировании золей поливалентными ионами и полиэлектролитами. Пептизацию используют для получения жидких дисперсных систем из порошков или паст в химической и пищевой технологии. Важная роль принадлежит пептизации в совокупности процессов, определяющих моющее действие, формирование и разрушение различных дисперсных структур. Иногда пептизация вредна, например при водоочистке, осветлении вин и др. Коагуля́ция (от лат. Coagulatio — свёртывание, сгущение) слипание частиц коллоидной системы при их столкновениях в процессе теплового (броуновского) движения, перемешивания или направленного перемещения во внешнем силовом поле. В результате К. образуются агрегаты — более крупные (вторичные) частицы, состоящие из скопления более мелких (первичных). Первичные частицы в таких скоплениях соединены силами межмолекулярного взаимодействия непосредственно или через прослойку окружающей (дисперсионной) среды. К. сопровождается прогрессирующим укрупнением частиц (увеличением размера и массы агрегатов) и уменьшением их числа в объёме дисперсионной среды — жидкости или газа. Различают быструю и медленную К. При быстрой К. почти каждое соударение частиц эффективно, т. е. приводит к их соединению; при медленной К. соединяется часть сталкивающихся частиц. В жидкой среде, например при К. золей (См. Золи), укрупнение частиц до известного предела (приблизительно до размера 10-4 см) не сопровождается их оседанием или всплыванием. Это скрытая К., при которой система сохраняет седиментационную устойчивость. Дальнейший рост частиц приводит к образованию сгустков или хлопьев (флокул), выпадающих в осадок (коагулят, коагель) или скапливающихся в виде сливок у поверхности; это явная К. В некоторых случаях при К. во всём объёме дисперсионной среды возникает рыхлая пространственная сетка (коагуляционная структура) и расслоения системы не происходит (см. Гели). Если коллоидные частицы — капельки жидкости или пузырьки газа, то К. может завершиться их слиянием, коалесценцией (См. Коалесценция). К. — самопроизвольный процесс, который, в соответствии с законами термодинамики, является следствием стремления системы перейти в состояние с более низкой свободной энергией. Однако такой переход затруднен, а иногда практически невозможен, если система агрегативно устойчива, т. е. способна противостоять укрупнению (агрегированию) частиц. Защитой от К. при этом может быть электрический заряд и (или) адсорбционно-сольватный слой на поверхности частиц, препятствующий их сближению (подробнее см. Коллоидные системы). Нарушить агрегативную устойчивость можно, например, повышением температуры (термокоагуляция), перемешиванием или встряхиванием, введением коагулирующих веществ (коагулянтов (См. Коагулянты)) и др. видами внешнего воздействия на систему. Минимальная концентрация введенного вещества, электролита или неэлектролита, вызывающая К. в системе с жидкой дисперсионной средой, называется порогом коагуляции. В полидисперсных системах, где частицы имеют разную величину, можно наблюдать ортокинетическую К. — налипание мелких частиц на более крупные при их оседании или всплывании. Слипание однородных частиц называется гомокоагуляцией, а разнородных — гетерокоагуляцией или адагуляцией. Гетерокоагуляция часто происходит при смешении дисперсных систем различного состава. К. может наступить без какого-либо внешнего воздействия на коллоидную систему (автокоагуляция) как результат физических или химических изменений, происходящих при её старении. Иногда К. обратима; в благоприятных условиях, особенно при введении поверхностно-активных веществ (См. Поверхностно-активные вещества), понижающих поверхностную межфазную энергию и облегчающих Диспергирование, возможен распад агрегатов на первичные частицы (Пептизация) и переход коагеля в золь. К. играет важную роль во многих технологических, биологических, атмосферных и геологических процессах. Так, при нагревании биополимеров (См. Биополимеры) (белков, нуклеиновых кислот) и при некоторых др. воздействиях на них, например изменении pH, наблюдается их К. Явления К. во многих биологических дисперсных системах (например, крови, лимфе) важны в связи с вопросами их агрегативной устойчивости. Очистка природных и сточных вод от высокодисперсных механических примесей, борьба с загрязнением воздушного пространства аэрозолями (См. Аэрозоли), выделение каучука из Латекса, получение сливочного масла и др. пищевых продуктов — характерные примеры использования К. в практических целях. Нежелательна К. при получении и хранении суспензий (См. Суспензии), эмульсий (См. Эмульсии), порошков и др. дисперсных систем промышленного или бытового назначения.
|
||||
Последнее изменение этой страницы: 2017-01-19; просмотров: 196; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.118.184.102 (0.009 с.) |