Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Реакционная способность и специфические реакции дикарбоновых кислотСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Дикарбоновые кислоты образуют два ряда функциональных производных - по одной и по двум карбоксильным группам. Кислотные свойства. С накоплением кислотных групп увеличиваются кислотные свойства соединений. Кислотность дикарбоновых кислот больше, чем монокарбоновых. Так, щавелевая кислота (pKa 1,23) значительно сильнее уксусной (pKa4,76), что связано с -/- эффектом группы СООН, и благодаря этому более полной делокализации отрицательного заряда в сопряженном основании. Влияние заместителя наиболее отчетливо проявляется при его близком расположении к кислотному центру. Декарбоксилирование. При нагревании с серной кислотой щавелевая кислота декарбоксилируется, а образовавшаяся муравьиная кислота разлагается далее. Малоновая кислота легко декарбоксилируется при нагревании выше 100 оС. Образование циклических ангидридов. В дикарбоновых кислотах, содержащих четыре или пять атомов углерода в цепи и способных вследствие этого находиться в клешневидной конформации, происходит сближение в пространстве функциональных групп. В результате внутримолекулярной атаки одной карбоксильной группой (нуклеофилом) электрофильного центра другой карбоксильной группы происходит образование (при нагревании) устойчивого пятиили соответственно шестичленного циклического ангидрида, как показано на примерах янтарной и глутаровой кислот. Другими словами, ангидриды дикарбоновых кислот являются продуктами внутримолекулярной циклизации. Малеиновая и фумаровая кислоты проявляют сходные химические свойства: вступают в реакции, свойственные соединениям с двойной связью (обесцвечивание бромной воды, водного раствора перманганата калия) и соединениям с карбоксильными группами (образуют два ряда производных - кислые и средние соли, эфиры и т. п.). Однако только одна из кислот, а именно малеиновая, в относительно мягких условиях претерпевает внутримолекулярную циклизацию с образованием циклического ангидрида. В фумаровой кислоте вследствие удаленности карбоксильных групп друг от друга в пространстве образование циклического ангидрида невозможно. Окисление янтарной кислоты in vivo. Дегидрирование (окисление) янтарной кислоты в фумаровую, катализируемое в организме ферментом, осуществляется с участием кофермента ФАД. Реакция протекает стереоспецифично с образованием фумаровой кислоты (в ионной форме - фумарат). 3.1.4. Таутомерия β -дикарбонильных соединений Определенная протонная подвижность атома водорода у α-атома углерода в карбонильных соединениях (слабого СН-кислотного центра) проявляется в их способности к реакциям конденсации. Если подвижность такого атома водорода возрастет настолько, что он сможет отщепиться в виде протона, то это приведет к образованию мезомерного иона (I), отрицательный заряд которого рассредоточен между атомами углерода и кислорода. Обратное присоединение протона к этому иону в соответствии с его граничными структурами может приводить либо к исходному карбонильному соединению, либо к енолу. В соответствии с этим карбонильное соединение может существовать в равновесии с изомером - енольной формой. Такой вид изомерии называют таутомерией, а изомеры, находящиеся в состоянии подвижного Таутомерия - равновесная динамическая изомерия. Ее сущность заключается во взаимном превращении изомеров с переносом какой-либо подвижной группы и соответствующим перераспределением электронной плотности. В рассматриваемом случае между кетонной и енольной формами осуществляется перенос протона, поэтому такое равновесие называют прототропной таутомерией, в частности, кето-енольной таутомерией. В монокарбонильных соединениях (альдегидах, кетонах, сложных эфирах) равновесие практически полностью смещено в сторону кетонной формы. Например, содержание енольной формы в ацетоне составляет всего 0,0002%. При наличии второй электроноакцепторной группы у α-атома углерода (например, второй карбонильной группы) содержание енольной формы возрастает. Так, в 1,3-дикарбонильном соединении ацетилацетоне (пентандионе-2,4) енольная форма преобладает. Енольная форма ацетилацетона дополнительно стабилизирована сопряженным со второй π-связью и внутримолекулярной водородной связью. Многие реакции, включающие образование и превращения карбонильных соединений in vivo, как будет показано в дальнейшем, протекают через промежуточные енольные формы или производные этих форм.
|
|||||
Последнее изменение этой страницы: 2016-12-16; просмотров: 1669; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.188.197.197 (0.01 с.) |