Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Типология системных объектов естественнонаучного познанияСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Современное естествознание имеет дело с рядом природных объектов, интегрированных в системы, включающие в себя ряд элементов, между которыми устанавливаются связи структурного характера. Выделяют следующие типы системных объектов: 1) малые системные объекты; 2) большие саморегулирующиеся системные объекты; 3) саморазвивающиеся системные объекты. Простые системные объекты Примеры: В технике – это машины и механизмы эпохи первой промышленной революции и последующей индустриализации: паровая машина, двигатель внутреннего сгорания, автомобиль, различные станки и т.п. В науке – объекты, исследуемые механикой. Основные свойства: - суммарные свойства их частей исчерпывающе определяют свойства целого; - часть внутри целого и вне целого обладает одними и теми же свойствами; - связи между элементами системы подчиняются строгой (лапласовской) причинности; - пространство и время предстают как нечто внешнее по отношению к таким системам, состояния их движения никак не влияют на характеристики пространства и времени. Большие саморегулирующиеся системные объекты. Исследования сложных саморегулирующихся систем особенно активизировалось с возникновением кибернетики, теории информации и теории систем. Но многие особенности их категориального описания были выявлены предшествующим развитием биологии и, в определенной мере, квантовой физики. Примерами сложных саморегулирующихся системных объектов являются автоматические станки, заводы-автоматы, системы управления космическими кораблями, автоматические системы регуляции грузовых потоков с применением компьютерных программ в технике; организмы, популяции, биогеоценозы, социальные объекты, рассмотренные как устойчиво воспроизводящиеся организованности, в живой природе и обществе. Основные свойства: - дифференцируются на относительно автономные подсистемы, в которых происходит массовое взаимодействие элементов; - целостность системы предполагает наличие в ней особого блока управления, прямые и обратные связи между ним и подсистемами; в них обязательно имеется программа функционирования, которая определяет управляющие команды и корректирует поведение системы на основе обратных связей; - целое не исчерпываются свойствами частей, возникает системное качество целого; - часть внутри целого и вне его обладает разными свойствами (так, органы и отдельные клетки в многоклеточных организмах специализированы и в этом качестве существуют только в рамках целого; будучи выделенными из организма, они разрушаются (погибают), что отличает сложные системы от простых механических систем, допустим, тех же механических часов, которые можно разобрать на части и из частей вновь собрать прежний работающий механизм); - причинность не может быть сведена к лапласовскому детерминизму и дополняется идеями «вероятностной» и «целевой причинности»; Пример целевой причинности – вода. Только вода в природе существует в трех агрегатных состояниях – жидкость, пар, лед, причем объем льда больше объема жидкой воды, а зависимость объема воды от температуры имеет ярко выраженный минимум. У воды аномально высокое поверхностное натяжение и аномально низкая сжимаемость, воду нельзя сжать. Аномальна вязкость воды. Она существенно ниже, чем у всех веществ, а с ростом давления вязкость уменьшается, тогда как у всех остальных веществ – возрастает. Почему вода ведет себя так? В чем причина аномальных свойств воды? Чтобы найти причину, необходимо рассмотреть вопрос о том, какую миссию выполняет вода в природе. Природная миссия воды состоит в том, что она тесно связана с жизнью. Анализ физико-химических свойств и роли воды в природе приводит к мысли о том, что свойства воды оказывают такое воздействие на природу, потому что они определенным образом согласованы. Например, чтобы появились почвы, необходимо было согласование следующих свойств: тройная точка на Р-Т диаграмме воды, находящаяся внутри условий существования жизни, в сочетании с аномально низкой вязкостью и сжимаемостью. Или, жизнь в водоемах зимой сохраняется согласованием свойства увеличения объема твердой фазы воды с наличием максимальной плотности при +4° С (оба свойства аномальны). Согласование свойств воды – согласование целеполагающее к выполнению условий существования жизни. Можно допустить, что в природе существует такая система взаимодействий, сила, которая ведет к цели, в данном случае к жизни. - в ряде ситуаций наряду с представлениями о «внешнем» времени вводится понятие «внутреннего времени» (биологические часы и биологическое время, социальное время). Биологическое время – это собственное внутреннее время биосистемы, которое характеризует прежде всего наиболее важные процессы жизнеобеспечения. Социальное время – время, в которое человеческая активность создает общество. Характеризуется возможностью ускорения или замедления в зависимости от частоты событий. Люди, создавая социальное время событиями личной жизни, могут относиться к нему как к надиндивидуальной внешне заданной и неизменной системе координат. Однако они сами определяют последовательность и границы событий, делят их на этапы, что заставляет обращать внимание на подвижность и неоднородность временных связей. Саморазвивающиеся системные объекты Этот тип системных объектов характеризуется развитием, в ходе которого происходит переход от одного типа саморегуляции к другому. К таким системам относятся биологические объекты, рассматриваемые не только в аспекте их функционирования, но и в аспекте развития; объекты современных биотехнологий и, прежде всего, генетической инженерии; системы современного проектирования, когда берется не только та или иная технико-технологическая система, но еще более сложный развивающийся комплекс - человек-технико-технологическая система, экологическая система, культурная среда, принимающая новую технологию. К саморазвивающимся системам относятся современные сложные компьютерные сети, предполагающие диалог «человек-компьютер», Интернет. Наконец, все социальные объекты, рассмотренные с учетом их исторического развития, принадлежат к типу сложных саморазвивающихся систем. К исследованию таких систем во второй половине 20 в. вплотную подошла и физика. Долгое время она исключала из своего познавательного арсенала идею исторической эволюции. Но во второй половине 20 в. возникла иная ситуация. С одной стороны, развитие современной космологии (концепция Большого взрыва и инфляционной теории развития Вселенной) привели к идее становления различных типов физических объектов и взаимодействий. Возникло представление о возникающих в процессе эволюции различных видах элементарных частиц и их взаимодействий как результата расщепления некоторого исходного взаимодействия и последующей его дифференциации. С другой стороны, идея эволюционных объектов активно разрабатывается в рамках термодинамики неравновесных процессов и синергетики. Взаимовлияние этих двух направлений исследования инкорпорирует в систему физического знания представления о самоорганизации и развитии. Основные свойства саморазвивающихся системных объектов: - Иерархичность уровневой организации элементов, способность порождать в процессе развития новые уровни; причем каждый такой новый уровень оказывает обратное воздействие на ранее сложившиеся, перестраивает их, в результате чего система обретает новую целостность. С появлением новых уровней организации система дифференцируется, в ней формируются новые, относительно самостоятельные подсистемы. Вместе с тем перестраивается блок управления, возникают новые параметры порядка, новые типы прямых и обратных связей. - Открытость, обмен веществом, энергией и информацией с внешней средой. В таких системах формируются особые информационные структуры, фиксирующие важные для целостности системы особенности ее взаимодействия со средой. Эти структуры выступают в функции программ поведения системы. - Категории части и целого включают в свое содержание новые смыслы. При формировании новых уровней организации происходит перестройка прежней целостности, появление новых параметров порядка. Иначе говоря, необходимо, но недостаточно зафиксировать наличие системного качества целого, а следует дополнить это понимание идеей изменения видов системной целостности по мере развития системы. - Новое понимание вещи и процессов взаимодействия. Традиционная для малых систем акцентировка (вещь как нечто первичное, а взаимодействие – это воздействие одной вещи на другую) сменяется представлениями о возникновении самих вещей в результате определенных взаимодействий. Вещь-система предстает в качестве процесса постоянного обмена веществом, энергией и информацией с внешней средой, как своеобразная неизменная структура в варьируемых взаимодействиях со средой. А усложнение системы в ходе развития, связанное с появлением новых уровней организации, выступает как процесс перехода от одного типа саморегуляции к другому. - Новое понимание категории «причинность». Она связывается с представлениями о превращении возможности в действительность. Целевая причинность, понятая как характеристика саморегуляции и воспроизводства системы, дополняется идеей направленности развития. Случайные флуктуации в фазе перестройки системы (в точках бифуркации) формируют аттракторы – совокупность внутренних и внешних условий, способствующих «выбору» самоорганизующейся системой одного из вариантов устойчивого развития; идеальное конечное состояние, к которому стремится система в своем развитии. Аттракторы в качестве своего рода программ-целей ведут систему к некоторому новому состоянию и изменяют возможности (вероятности) возникновения других ее состояний. Спектр направлений эволюции системы после возникновения аттракторов трансформируется, некоторые, ранее возможные направления становятся закрытыми.
|
||||
Последнее изменение этой страницы: 2017-02-07; просмотров: 649; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.217.189.152 (0.014 с.) |