Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Деформация твердого тела. Физический смысл напряжения.

Поиск

Рассматривая механику твердого тела, мы пользовались понятием абсолютно твердого тела. Однако в природе абсолютно твердых тел нет, так как все реальные тела под действием сил изменяют свою форму и размеры, т. е. деформируются.

Деформация называется упругой, если после прекращения действия внешних сил тело принимает первоначальные размеры и форму. Деформации, которые сохраняются в теле после прекращения действия внешних сил, называются пластическими (или остаточными). Деформации реального тела всегда пластические, так как они после прекращения действия внешних сил никогда полностью не исчезают. Однако если остаточные деформации малы, то ими можно пренебречь и рассматривать упругие деформации, что мы и будем делать.

В теории упругости доказывается, что все виды деформаций (растяжение или сжатие, сдвиг, изгиб, кручение) могут быть сведены к одновременно происходящим деформациям растяжения или сжатия и сдвига.

Рассмотрим однородный стержень длиной l и площадью поперечного сечения S (рис. 34), к концам которого приложены направленные вдоль его оси силы F1 иF2 (F 1 =F 2 =F), в результате чего длина стержня меняется на величину D l. Естественно, что при растяжении D l положительно, а при сжатии отрицательно.

Сила, действующая на единицу площади поперечного сечения, называется напряже­нием:

(21.1)

Если сила направлена по нормали к поверхности, напряжение называется нормальным, если же по касательной к поверхности — тангенциальным.

Количественной мерой, характеризующей степень деформации, испытываемой те­лом, является его относительная деформация. Так, относительное изменение длины стержня (продольная деформация)

(21.2)

относительное поперечное растяжение (сжатие)

где d — диаметр стержня.

Деформации e и e' всегда имеют разные знаки (при растяжении D l положительно, a D d отрицательно, при сжатии D l отрицательно, a D d положительно). Из опыта вытекает взаимосвязь e и e':

где m положительный коэффициент, зависящий от свойств материала и называемый коэффициентом Пуассона*.

Английский физик Р. Гук (1635—1703) экспериментально установил, что для малых деформаций относительное удлинение e и напряжение s прямо пропорциональны друг другу:

(21.3)

где коэффициент пропорциональности Е называется модулем Юнга**. Из выражения (21.3) видно, что модуль Юнга определяется напряжением, вызывающим относитель­ное удлинение, равное единице.

Из формул (21.2), (21.3) и (21.1) вытекает, что

или

(21.4)

где k— коэффициент упругости. Выражение (21.4) также задает закон Гука, согласно которому удлинение стержня при упругой деформации пропорционально действующей на стержень силе.

Вопрос 20.1

Закон Гука.

Деформации твердых тел подчиняются закону Гука до известного предела. Связь между деформацией и напряжением представляется в виде диаграммы напряжений, качественный ход которой мы рассмотрим для металлического образца (рис. 35). Из рисунка видно, что линейная зависимость s(e), установленная Гуком, выполняется лишь в очень узких пределах до так называемого предела пропорциональности (sп). При дальнейшем увеличении напряжения деформация еще упругая (хотя зависимость s(e) уже нелинейна) и до предела упругости (sу) остаточные деформации не возникают. За пределом упругости в теле возникают остаточные деформации и график, описывающий возвращение тела в первоначальное состояние после прекращения действия силы, изобразится не кривой ВО, а параллельной ей — CF. Напряжение, при котором появляется заметная остаточная деформация (»0,2%), называется пределом текучести (sт) — точка С на кривой. В области CD деформация возрастает без увеличения напряжения, т. е. тело как бы «течет». Эта область называется областью текучести (или областью пластических деформаций). Материалы, для которых область текучести значительна, называются вязкими, для которых же она практически отсутствует — хрупкими. При дальнейшем растяжении (за точку D) происходит разрушение тела. Мак­симальное напряжение, возникающее в теле до разрушения, называется пределом прочности (sр).

Диаграмма напряжений для реальных твердых тел зависит от различных факторов. Одно и то же твердое тело может при кратковременном действии сил проявлять себя как хрупкое, а при длительных, но слабых силах является текучим.

Вычислим потенциальную энергию упруго растянутого (сжатого) стержня, которая равна работе, совершаемой внешними силами при деформации:

где х — абсолютное удлинение стержня, изменяющееся в процессе деформации от 0 до D l. Согласно закону Гука (21.4), F=kx=ESx/l. Поэтому

т. е. потенциальная энергия упруго растянутого стержня пропорциональна квадрату деформации (D l)2.

Деформацию сдвига проще всего осуществить, если взять брусок, имеющий форму прямоугольного параллелепипеда, и приложить к нему силу Ft, (рис. 36), касательную к его поверхности (нижняя часть бруска закреплена неподвижно). Относительная деформация сдвига определяется из формулы

где D s — абсолютный сдвиг параллельных слоев тела относительно друг друга; h — расстояние между слоями (для малых углов tgg»g).

Вопрос 21

О силах инерции.

Инерция является неотъемлемым свойством физических тел, которое заключается в их способности противодействовать любому изменению состояния движения или состояния покоя, которое является частным случаем движения. По определению Жуковского Н. Е. «Силой инерции называется сила, которая по величине равна произведению массы на полное ускорение, а направлена в сторону, противоположную полному ускорению». (см. фотокопию выше, «Теоретическая механика», издание второе, ГОСУДАРСТВЕННОЕ ИЗДАНИЕ ТЕХНИКО-ТЕОРЕТИЧЕСКОЙ ЛИТЕРАТУРЫ МОСКВА- ЛЕНИНГРАД 1952 г., §2 Сила инерции). Таким образом, определение силы инерции у Жуковского по своему смыслу в точности соответствует определению силы противодействия, которая возникает при всяком силовом воздействии на материальное тело в соответствии с третьим законом Ньютона. Далее Жуковский Н. Е. пишет: «Введение понятия о такой фиктивной силе облегчает формулировку многих теорем динамики, особенно в вопросе об относительном движении и о движении несвободной материальной точки». То есть Жуковский относит силы инерции, вводимые в математическую модель ускоренного движения тел к фиктивным силам, которые не оказывают реального влияния на ускоренное движение материальных тел и вводятся в неинерциальных системах отсчета как математический прием только для облегчения формулировок теорем динамики. В современной физике принято различать «обычные» силы, действующие на тело со стороны других тел в инерциальных системах отсчета и фиктивные силы инерции, возникающие в неинерциальных системах отсчета. А.Н. Матвеев в работе «Механика и теория относительности», 3-е издание, Москва, «ОНИКС 21 век», «Мир и образование», 2003 г. дает следующее определение «обычных» сил: «В инерциальных системах отсчёта единственной причиной ускоренного движения тела являются силы, действующие на него со стороны других тел. Сила всегда есть результат взаимодействия материальных тел». Силы, действующие на материальные тела со стороны других тел, Матвеев называет «обычными» силами. Однако в неинерциальных системах отсчета наблюдаются ускорения, которые не являются результатом действия на тела каких-либо сил со стороны других тел. По этому поводу Матвеев пишет: «В неинерциальных системах можно ускорить тело простым изменением состояния движения системы отсчета. Рассмотрим, например, неинерциальную систему отсчета, связанную с автомобилем. При изменении скорости его относительно поверхности Земли в этой системе отсчета все небесные тела испытывают соответствующие ускорения. Ясно, что эти ускорения не являются результатом действия на небесные тела каких-либо сил со стороны других тел. Таким образом, в неинерциальных системах отсчета существуют ускорения, которые не связаны с силами такого же характера, какие известны в инерциальных системах отсчета. Благодаря этому первый закон Ньютона в них не имеет смысла. Третий закон Ньютона в отношении взаимодействия материальных тел, вообще говоря, выполняется. Однако, поскольку в неинерциальных системах отсчета ускорения тел вызываются не только «обычными» силами взаимодействия между материальными телами, проявления третьего закона Ньютона настолько искажаются, что он также утрачивает ясное физическое содержание». Силы, которые проявляются в неинерциальной системе отсчета, в отличие от «обычных» сил Матвеев определяет как силы «особой природы». При этом Матвеев отмечает, что этот путь был выбран не им, а сложился исторически и предлагает свой альтернативный вариант: «При построении теории движения в неинерциальных системах в принципе можно было бы идти по пути коренного изменения представлений, выработанных в инерциальных системах, а именно можно было бы принять, что ускорения тел вызываются не только силами, но и некоторыми другими факторами, которые ничего общего с силами не имеют. Однако исторически был выбран иной путь — эти другие факторы были признаны силами, которые находятся с ускорениями в таких же соотношениях, как и обычные силы. При этом предполагается, что в неинерциальных системах, так же как и инерциальных, ускорения вызываются только силами, но наряду с «обычными» силами взаимодействия существуют еще силы особой природы, называемые силами инерции». Таким образом, в современной физике в неинерциальных системах отсчёта наряду с «обычными» силами взаимодействия необходимо учитывать силы инерции, которые Матвеев увязывает с ускоренным движением неинерциальной системы отсчета относительно инерциальной. «Существование сил инерции обусловливается ускорением движения неинерциальной системы отсчета относительно инерциальной. Силы инерции берутся такими, чтобы обеспечить в неинерциальной системе отсчета те ускорения, которые фактически имеются, но обычными силами взаимодействия объясняются лишь частично». При этом Матвеев, так же как и Жуковский отмечает, что силы инерции, вводимые в неинерциальных системах отсчета в математической модели теории движения, являются фиктивными силами, т.е. реально несуществующими: «Введение этих сил в уравнения движения, использование их при объяснении физических явлений и т. д. в неинерциальных системах координат является правильным и необходимым. Однако использование понятия сил инерции при анализе движений в инерциальных системах координат является ошибочным, поскольку в них эти силы отсутствуют». С точки зрения современной физики, связав неинерциальную систему отсчёта с ускоренно движущимся телом можно, прибавив к нему силу инерции, получить условие равновесия для тела в неинерциальной системе отсчёта. В этом случае ускорение движения тела определяется, как ускорение неинерциальной системы отсчёта относительно инерциальной системы без учета сил инерции. Если же тело движется ещё и относительно неинерциальной системы отсчета, то задача значительно усложняется. В этом случае абсолютное ускорение будет определяться как сумма относительного ускорения, полученного телом в неинерциальной системе в результате «обычных» взаимодействий и ускорения самой неинерциальной системы отсчёта относительно инерциальной системы отсчета. Силы инерции обуславливают разность между относительным и абсолютным ускорением. При этом сила инерции (Fин) определяется выражением:

Fин = m*(а отн - аабсол)

Вопрос 21.1



Поделиться:


Последнее изменение этой страницы: 2016-08-10; просмотров: 858; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.117.156.26 (0.009 с.)