Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Основной закон релятивистской динамики материальной точки

Поиск

Масса движущихся релятивистских частиц зависит от их скорости:

(39.1)

где m 0 — масса покоя частицы, т. е. масса, измеренная в той инерциальной системе отсчета, относительно которой частица находится в покое; с — скорость света в ваку­уме; т — масса частицы в системе отсчета, относительно которой она движется со скоростью v. Следовательно, масса одной и той же частицы различна в разных инерциальных системах отсчета.

Из принципа относительности Эйнштейна, утверждающего инвариантность всех законов природы при переходе от одной инерциальной системы отсчета к другой, следует условие инвариантности уравнений физических законов относительно преобразований Лоренца. Основной закон динамики Ньютона

оказывается также инвариантным по отношению к преобразованиям Лоренца, если в нем справа стоит производная по времени от релятивистского импульса.

Основной закон релятивистской динамики материальной точки имеет вид

(39.2)

или

(39.3)

где

(39.4)

— релятивистский импульс материальной точки.

Отметим, что уравнение (39.3) внешне совпадает с основным уравнением ньютоновской механики (6.7). Однако физический смысл его другой: справа стоит производ­ная по времени от релятивистского импульса, определяемого формулой (39.4). Таким образом, уравнение (39.2) инвариантно по отношению к преобразованиям Лоренца и, следовательно, удовлетворяет принципу относительности Эйнштейна. Следует учиты­вать, что ни импульс, ни сила не являются инвариантными величинами. Более того, в общем случае ускорение не совпадает по направлению с силой.

В силу однородности пространства в релятивистской механике выполняет­ся закон сохранения релятивистского импульса: релятивистский импульс замкнутой системы сохраняется, т. е. не изменяется с течением времени. Часто вообще не оговаривают, что рассматривают релятивистский импульс, так как если тела движутся со скоростями, близкими к с, то можно использовать только релятивистское выраже­ние для импульса.

Анализ формул (39.1), (39.4) и (39.2) показывает, что при скоростях, значительно меньших скорости с, уравнение (39.2) переходит в основной закон (см. (6.5)) классичес­кой механики. Следовательно, условием применимости законов классической (ньютоновской) механики является условие v<<c. Законы классической механики получаются как следствие теории относительности для предельного случая v<<c (формально пере­ход осуществляется при с ®¥). Таким образом, классическая механика — это механика макротел, движущихся с малыми скоростями (по сравнению со скоростью света в вакууме).

Экспериментальное доказательство зависимости массы от скорости (39.1) является подтверждением справедливости специальной теории относительности. В дальнейшем будет показано, что на основании этой зависимости производятся расчеты ускорителей.

Вопрос 41.1

Закон взаимосвязи массы и энергии

Релятивистская динамика. Динамика, основанная на принципах СТО, инвариантная относительно преобразований Лоренца, называется релятивистской динамикой. Основной закон динамики (второй закон Ньютона) для материальной точки имеет вид:  
Релятивистский импульс В теории относительности импульс определяется по формуле Следовательно, . При υ=c получим, что со скоростью, равной скорости света может двигаться только тело, имеющее массу, равную нулю. Это говорит о предельном характере скорости света для материальных тел.  
Закон взаимосвязи массы и энергии Полную энергию свободного тела можно определить как произведение его релятивистской массы на квадрат скорости света в вакууме: E=mc2 E=mc2
Если изменяется энергия системы, то изменяется и ее масса: . Всякое изменение любой энергии (тела, частицы, системы тел) на сопровождается пропорциональным изменением массы на Δm. Нельзя говорить, что при этом масса переходит в энергию. В действительности энергия переходит из одной формы (механической) в другие (электромагнитную и ядерную), но любое превращение энергии сопровождается превращением массы.

Вопрос 41.2



Поделиться:


Последнее изменение этой страницы: 2016-08-10; просмотров: 662; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.152.146 (0.006 с.)