Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Основы теории электромагнитного поля. Уравнения Максвелла электромагнитного поля в интегральной форме.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Вихревое электрическое поле
Рассматривая свойства электростатического поля, отмечалось, что работа по перемещению заряда из одной точки поля в другую не зависит от пути. Поле с таким свойством называют потенциальным. Отношение работы по перемещению положительного заряда из бесконечности в какую-либо точку называют потенциалом этой точки, а разность потенциалов двух точек – электрическим напряжением. В электростатическом поле E работа по перемещению единичного заряда по замкнутому контуру L равна нулю (рис. 11.1):
Такой интеграл называют циркуляцией напряженности по замкнутому контуру L. Предел отношения циркуляции векторного поля по замкнутому контуру к площади охватываемого контуром при стремлении ее к нулю называют ротором (rot) векторного поля. Для электростатического поля rot E = 0. Анализируя результаты опытов Фарадея, Максвелл установил, что эдс электромагнитной индукции, возникающая в контуре, пропорциональна скорости изменения магнитного потока, охватываемого этим контуром: . (11.1) Опыты показали, что эдс индукции не зависит от материала проводника, его состояния и температуры. Максвелл пришел к выводу, что причиной возникновения электромагнитной индукции является само электрическое поле, а проводники играют второстепенную роль и служат только прибором, обнаруживающим это поле. Электроны в проводнике под действием этого поля приходят в движение, и в замкнутой цепи контура возникает индукционный ток. Электрическое поле, возникающее в опытах по электромагнитной индукции, не удовлетворяет условию потенциальности. Особенность этого электрического поля в том, что оно не является электростатическим. При изменении магнитного поля в какой-либо точке всегда можно найти контур, в котором возникнет эдс индукции, а следовательно, и вихревое электрическое поле. Рассмотрев эти явления, Максвелл пришел к выводу, что всякое изменение магнитного поля вызывает появление электрического поля. Для магнитного потока, пронизывающего контур l, площадью S (рис. 11.1) можно записать соотношение , (11.2) Рис. 11.1. Контур, охватывающий магнитный поток где Bn – проекция вектора магнитной индукции на ось, параллельную нормали n к элементарной площадкеdS. Кроме того, эдс индукции по замкнутому контуру: . (11.3) Объединяя уравнения (11.1) и (11.3) получим: . (11.4) Это соотношение выражает связь между вихревым электрическим (E) и переменным магнитным полем (B) и является одним из основных уравнений в теории Максвелла (основной закон электромагнитной индукции).
Уравнения Максвелла
Обобщив основные законы электрических и магнитных явлений: теоремы Остроградского-Гаусса, законов полного тока и электромагнитной индукции Максвелл создал теорию, позволяющую решать задачи, связанные с отысканием электрических и магнитных полей, создаваемых заданным распределением зарядов и токов. Согласно этой теории, переменное магнитное поле создает вихревое электрическое, как и переменное, электрическое порождает вихревое магнитное поле. Теория Максвелла представляет собой систему уравнений, в которой свойства среды описываются с помощью трех величин: относительной диэлектрической проницаемости ε, относительной магнитной проницаемости и удельной электропроводности . Первое уравнение Максвелла в интегральной форме представляет собой закон электромагнитной индукции: . (11.11) Если в уравнении (11.11) длина контура L стремится к нулю, то его можно привести к виду: . (11.12) Это первое уравнение Максвелла в дифференциальной форме. Второе уравнение Максвелла в интегральной форме является законом полного тока:
, (11.13)
где Ik – k-й ток, пронизывающий контур L; Iсм – ток смещения. Второе уравнение Максвелла в дифференциальной форме: . (11.14) Помимо уравнений (11.12) и (11.14) в систему уравнений Максвелла входит теорема Остроградского-Гаусса для электрического и магнитного полей: , (11.15) . (11.16) Уравнение (11.16) выражает факт отсутствия свободных магнитных зарядов. Если ввести объемную плотность свободных зарядов и учесть теорему Гаусса: , где dV – элемент объема V, можно получить третье и четвертое уравнения Максвелла в дифференциальной форме: , (11.17) . (11.18) Полная система уравнений Максвелла: , , , дополняется материальными уравнениями, связывающими векторы E, D, H и B с величинами, описывающими электрические и магнитные свойства среды: , , . (11.19) При заданных начальных условиях система уравнений Максвелла имеет единственное решение. Теория Максвелла не только объяснила уже известные факты, но и предсказала новые явления. Максвелл теоретически предсказал существование электромагнитных волн, распространяющихся в пространстве с конечной скоростью, что в дальнейшем получило блестяще подтверждение.
|
||||
Последнее изменение этой страницы: 2016-04-20; просмотров: 410; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.148.144.139 (0.007 с.) |