Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Эффект Доплера в акустике . Различные случаи движения источника и приемника звука относительно среды .Содержание книги
Поиск на нашем сайте
Эффектом Доплера* называется изменение частоты колебаний, воспринимаемой приемником, при движении источника этих колебаний и приемника друг относительно друга. Например, из опыта известно, что тон гудка поезда повышается по мере его приближения к платформе и понижается при удалении, т. е. движение источника колебаний (гудка) относительно приемника (уха) изменяет частоту принимаемых колебаний. * X. Доплер (1803—1853) — австрийский физик, математик и астроном.
Для рассмотрения эффекта Доплера предположим, что источник и приемник звука движутся вдоль соединяющей их прямой; vист и vпр — соответственно скорости движения источника и приемника, причем они положительны, если источник (приемник) приближается к приемнику (источнику), и отрицательны, если удаляется. Частота колебаний источника равна v0. 1. Источник и приемник покоятся относительно среды, т. е. vист = vпр=0. Если v — скорость распространения звуковой волны в рассматриваемой среде, то длина волны =vT=v/v0. Распространяясь в среде, волна достигнет приемника и вызовет колебания его звукочувствительного элемента с частотой Следовательно, частота v звука, которую зарегистрирует приемник, равна частоте v0, с которой звуковая волна излучается источником. 2. Приемник приближается к источнику, а источник покоится, т. е. vпр>0, vист=0. В данном случае скорость распространения волны относительно приемника станет равной v + vпр. Так как длина волны при этом не меняется, то т. е. частота колебаний, воспринимаемых приемником, в (v+vпр)/v раз больше частоты колебаний источника. 3. Источник приближается к преемнику, а приемник покоится, т. е. vист >0, vпр=0. Скорость распространения колебаний зависит лишь от свойств среды, поэтому за время, равное периоду колебаний источника, излученная им волна пройдет в направлении к приемнику расстояние vT (равное длине волны ) независимо от того, движется ли источник или покоится. За это же время источник пройдет в направлении волны расстояние vистT (рис. 224), т. е. длина волны в направлении движения сократится и станет равной '=—vистТ=(v—vист)T, тогда т. е. частота колебаний, воспринимаемых приемником, увеличится в v/(v – vист) раз. В случаях 2 и 3, если vист<0 и vпр<0, знак будет обратным. 4. Источник и приемник движутся относительно друг друга. Используя результаты, полученные для случаев 2 и 3, можно записать выражение для частоты колебаний, воспринимаемых приемником: (159.1) причем верхний знак берется, если при движении источника или приемника происходит их сближение, нижний знак — в случае их взаимного удаления. Из приведенных формул следует, что эффект Доплера различен в зависимости от того, движется ли источник или приемник. Если направления скоростей vпри vист не совпадают с проходящей через источник и приемник прямой, то вместо этих скоростей в формуле (159.1) надо брать их проекции на направление этой прямой. Гармонические колебания заряда, напряжения на конденсаторе и силы тока в цепи одиночного контура. Электромеханическая аналогия. Из сравнений упругих колебаний пружинного маятника и электромагнитных колебаний в контуре следует, что между этими явлениями имеется аналогия. Оба колебания имеют одну степень свободы: роль смещения маятника от положения равновесия х в колебательном контуре играет заряд на обкладках конденсатораq. Роль скорости маятника играет в контуре сила тока, роль квазиупругого элемента играет величина, обратная электроёмкости, роль инерционного элемента - индуктивность. Таким образом имеет место следующая аналогия: х ↔ q υ ↔ I k ↔ (1/С) m ↔ L
Далее, пользуясь этой аналогией, можно показать, что кинетическая энергия маятника mυ2/2 аналогична энергии магнитного поля катушки LI2/2, Потенциальная энергия упругой деформации kx2/2аналогична энергии электрического поля конденсатора q2/2С: Wкин ↔ Wмагн Wпот ↔ Wэл
Электромеханическая аналогия позволяет моделировать колебания в сложных механических системах электрическими средствами, значительно более удобными для анализа и измерений и обладающими большей наглядностью.
|
||||
Последнее изменение этой страницы: 2016-04-20; просмотров: 447; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.129.195.82 (0.008 с.) |