ТОП 10:

Принцип Гюйгенса-Френеля. Приближенный метод расчета дифракции с помощью зон Френеля. Световое действие сферического волнового фронта в отсутствии преград.



ПРИНЦИП ГЮЙГЕНСА - ФРЕНЕЛЯ

 

Дифракцией называется огибание волнами препятствий, встречающихся на их пути, или в более широком смысле - любое отклонение распространения волн вблизи препятствий от законов геометрической оптики. Благодаря дифракции волны могут попадать в область геометрической тени, огибать препятствия, проникать через небольшие отверстия в экранах и т. д. Например, звук хорошо слышен за углом дома, т. е. звуковая волна его огибает.

Явление дифракции объясняется с помощью принципа Гюйгенса (см. § 170), согласно которому каждая точка, до которой доходит волна, служит центром вторичных волн, а огибающая этих волн задает положение волнового фронта в следующий момент времени.

Пусть плоская волна нормально падает на отверстие в непрозрачном экране (рис. 256). Согласно Гюйгенсу, каждая точка выделяемого отверстием участка волнового фронта служит источником вторичных волн (в однородной изотропной среде они сферические). Построив огибающую вторичных волн для некоторого момента времени, видим, что фронт волны заходит в область геометрической тени, т. е. волна огибает края отверстия.

 

Рис. 256

 

Явление дифракции характерно для волновых процессов. Поэтому если свет является волновым процессом, то для него должна наблюдаться дифракция, т. е. световая волна, падающая на границу какого-либо непрозрачного тела, должна огибать его (проникать в область геометрической тени). Из опыта, однако, известно, что предметы, освещаемые светом, идущим от точечного источника, дают резкую тень и, следовательно, лучи не отклоняются от их прямолинейного распространения. Почему же возникает резкая тень, если свет имеет волновую природу? К сожалению, теория Гюйгенса ответить на этот вопрос не могла.

Принцип Гюйгенса решает лишь задачу о направлении распространения волнового фронта, но не затрагивает вопроса об амплитуде, а следовательно, и об интенсивности волн, распространяющихся по разным направлениям. Френель вложил в принцип Гюйгенса физический смысл, дополнив его идеей интерференции вторичных волн.

Согласно принципу Гюйгенса - Френеля, световая волна, возбуждаемая каким-либо источником S, может быть представлена как результат суперпозиции когерентных вторичных волн, «излучаемых» фиктивными источниками. Такими источниками могут служить бесконечно малые элементы любой замкнутой поверхности, охватывающей источник S.Обычно в качестве этой поверхности выбирают одну из волновых поверхностей, поэтому все фиктивные источники действуют синфазно. Таким образом, волны, распространяющиеся от источника, являются результатом интерференции всех когерентных вторичных волн. Френель исключил возможность возникновения обратных вторичных волн и предположил, что если между источником и точкой наблюдения находится непрозрачный экран с отверстием, то на поверхности экрана амплитуда вторичных волн равна нулю, а в отверстии - такая же, как при отсутствии экрана.

Учет амплитуд и фаз вторичных волн позволяет в каждом конкретном случае найти амплитуду (интенсивность) результирующей волны в любой точке пространства, т. е. определить закономерности распространения света. В общем случае расчет интерференции вторичных волн довольно сложный и громоздкий, однако, как будет показано ниже, для некоторых случаев нахождение амплитуды результирующего колебания осуществляется алгебраическим суммированием.

 

ПРИНЦИП ГЮЙГЕНСА - ФРЕНЕЛЯ

 

Дифракцией называется огибание волнами препятствий, встречающихся на их пути, или в более широком смысле - любое отклонение распространения волн вблизи препятствий от законов геометрической оптики. Благодаря дифракции волны могут попадать в область геометрической тени, огибать препятствия, проникать через небольшие отверстия в экранах и т. д. Например, звук хорошо слышен за углом дома, т. е. звуковая волна его огибает.

Явление дифракции объясняется с помощью принципа Гюйгенса (см. § 170), согласно которому каждая точка, до которой доходит волна, служит центром вторичных волн, а огибающая этих волн задает положение волнового фронта в следующий момент времени.

Пусть плоская волна нормально падает на отверстие в непрозрачном экране (рис. 256). Согласно Гюйгенсу, каждая точка выделяемого отверстием участка волнового фронта служит источником вторичных волн (в однородной изотропной среде они сферические). Построив огибающую вторичных волн для некоторого момента времени, видим, что фронт волны заходит в область геометрической тени, т. е. волна огибает края отверстия.

 

Рис. 256

 

Явление дифракции характерно для волновых процессов. Поэтому если свет является волновым процессом, то для него должна наблюдаться дифракция, т. е. световая волна, падающая на границу какого-либо непрозрачного тела, должна огибать его (проникать в область геометрической тени). Из опыта, однако, известно, что предметы, освещаемые светом, идущим от точечного источника, дают резкую тень и, следовательно, лучи не отклоняются от их прямолинейного распространения. Почему же возникает резкая тень, если свет имеет волновую природу? К сожалению, теория Гюйгенса ответить на этот вопрос не могла.

Принцип Гюйгенса решает лишь задачу о направлении распространения волнового фронта, но не затрагивает вопроса об амплитуде, а следовательно, и об интенсивности волн, распространяющихся по разным направлениям. Френель вложил в принцип Гюйгенса физический смысл, дополнив его идеей интерференции вторичных волн.

Согласно принципу Гюйгенса - Френеля, световая волна, возбуждаемая каким-либо источником S, может быть представлена как результат суперпозиции когерентных вторичных волн, «излучаемых» фиктивными источниками. Такими источниками могут служить бесконечно малые элементы любой замкнутой поверхности, охватывающей источник S.Обычно в качестве этой поверхности выбирают одну из волновых поверхностей, поэтому все фиктивные источники действуют синфазно. Таким образом, волны, распространяющиеся от источника, являются результатом интерференции всех когерентных вторичных волн. Френель исключил возможность возникновения обратных вторичных волн и предположил, что если между источником и точкой наблюдения находится непрозрачный экран с отверстием, то на поверхности экрана амплитуда вторичных волн равна нулю, а в отверстии - такая же, как при отсутствии экрана.

Учет амплитуд и фаз вторичных волн позволяет в каждом конкретном случае найти амплитуду (интенсивность) результирующей волны в любой точке пространства, т. е. определить закономерности распространения света. В общем случае расчет интерференции вторичных волн довольно сложный и громоздкий, однако, как будет показано ниже, для некоторых случаев нахождение амплитуды результирующего колебания осуществляется алгебраическим суммированием.

 

Согласно принципу Гюйгенса-Френеля световое поле в некоторой точке пространства является результатом интерференции вторичных источников. Френель предложил оригинальный и чрезвычайно наглядный метод группировки вторичных источников. Этот метод позволяет приближенным способом рассчитывать дифракционные картины, и носит название метода зон Френеля.

Зоны Френеля вводятся следующим образом. Рассмотрим распространение световой волны из точки L в точку наблюдения P. Сферический волновой фронт, исходящий из точки L разобьем концентрическими сферами с центром в точке P и с радиусами z1 + λ/2; z1 + 2 λ/2; z1 + 3 λ/2…

Полученные кольцевые зоны и носят название зон Френеля.

Смысл разбиения поверхности на зоны Френеля состоит в том, что разность фаз элементарных вторичных волн, приходящих в точку наблюдения от данной зоны, не превышает π. Сложение таких волн приводит к их взаимному усилению. Поэтому каждую зону Френеля можно рассматривать как источник вторичных волн, имеющих определенную фазу. Две соседние зоны Френеля действуют как источники, колеблющиеся в противофазе, т.е вторичные волны, распространяющиеся из соседних зон в точке наблюдения будут гасить друг друга. Чтобы найти освещенность в точке наблюдения P нужно просуммировать напряженности электрических полей от всех вторичных источников, приходящих в данную точку. Результат сложения волн зависит от амплитуды и разности фаз. Так как разность фаз между соседними зонами равна π, то можно перейти к суммированию амплитуд.

Амплитуда вторичной сферической волны пропорциональна площади элементарного участка, испускающего эту волну (т.е пропорциональна площади зоны Френеля). Кроме того, она убывает с увеличением расстояния z1 от источника вторичной волны до точки наблюдения по закону 1 / z1 и с ростом угла φ между нормалью к элементарному участку, испускающего волну, и направлением распространения волны.

Можно показать, что площади зон Френеля примерно одинаковы и равны:

, где Sn — площадь n-ой зоны Френеля, z0 — радиус сферы.

Расстояние z1n от зоны до точки наблюдения медленно растет по линейному закону: z1n = z1 + n λ / 2, где n — номер зоны.

Угол φ также увеличивается при увеличении номера зоны Френеля. Следовательно, амплитуды вторичных волн убывают. Таким образом, можно записать A1 > A2 > A3 > … > An-1 > An > An+1 > …, где An — амплитуда вторичной волны, испущенной n-ой зоной. Амплитуда результирующего светового колебания в точке наблюдения P будет определяться вкладом всех зон. При этом, волна из второй зоны Френеля будет гасить волну из первой зоны (так как они придут в точку P в противофазе), волна из третьей зоны будет усиливать первую волну (так как между ними разность фаз равна нулю), четвертая волна ослабит первую и так далее. Это значит, что при суммировании необходимо учесть, что все четные зоны дадут вклад в результирующую амплитуду одного знака, а все нечетные зоны — противоположного знака. Таким образом, суммарная амплитуда в точке наблюдения равна: A = A1 — A2 + A3 — A4 + …

Это выражение можно переписать в виде:

Вследствие монотонного убывания амплитуд вторичных волн можно записать .

Тогда выражения, заключенные в круглые скобки будут равны нулю, и амплитуда А в точке наблюдения будет равна: А = А1/2. То есть амплитуда, создаваемая в некоторой точке наблюдения P сферической волновой поверхностью, равна половине амплитуды, создаваемой одной лишь центральной зоной. Таким образом, действие всей волновой поверхности эквивалентно половине действия центральной зоны Этот же результат можно получить, если применить графический метод сложения амплитуд. Если световая волна встречает на пути своего распространения какое-либо препятствие (отверстие или преграду), то в этом случае мы разобьем на зоны Френеля волновой фронт, дошедший до этого препятствия. Понятно, что препятствие закроет часть зон Френеля, и вклад в результирующую амплитуду дадут только волны, испущенные открытыми зонами Френеля. Вы можете пронаблюдать, как меняется вид дифракционной картины в зависимости от числа открытых зон Френеля.

На основе своего метода Френель доказал, что свет распространяется практически прямолинейно.

Действительно, можно показать, что размеры зон Френеля (их радиусы) равны:.

В качестве примера рассмотрим случай, когда z0 = z1 = 1 м; λ = 0.5 мкм, тогда радиус первой (центральной) зоны равен r1 = 0.5 мм. Амплитуда в точке наблюдения P равна половине амплитуды волны, испущенной первой зоной (действие всей волновой поверхности свелось к действию ее небольшого участка), следовательно, свет от точки L к точке P распространяется в пределах очень узкого (диаметром всего один миллиметр!) канала, то есть практически прямолинейно! Показав, что свет распространяется прямолинейно, Френель с одной стороны доказал правильность своих рассуждений, а с другой преодолел препятствие, которое в течение веков стояло на пути утверждения волной теории — согласование прямолинейного распространения света с его волновым механизмом. Другим доказательством того, что метод зон Френеля дает верный результат, являются следующие рассуждения. Действие всей волновой поверхности эквивалентно половине действия центральной зоны. Если открыть только первую зону Френеля, то согласно расчетам Френеля результирующая амплитуда в точке наблюдения будет равна А1. То есть в этом случае амплитуда света в точке наблюдения увеличится в 2 (а интенсивность, соответственно, в четыре раза) по сравнению со случаем, когда открыты все зоны Френеля. Этот результат можно проверить опытным путем, поставив на пути световой волны преграду с отверстием, открывающим только первую зону Френеля. Интенсивность в точке наблюдения действительно возрастает в четыре раза по сравнению со случаем, когда преграда между источником излучения и точкой наблюдения отсутствует!

 







Последнее изменение этой страницы: 2016-04-20; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.234.241.200 (0.008 с.)