Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Дифракция сферической световой волны на круглом отверстии и диске. Зависимость светового действия открытой части фронта волны от их размеров.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Дифракция сферических волн (дифракция Френеля) -дифракционная картина наблюдается на конечном расстоянии от препятствия, вызвавшего дифракцию. Обычно рассчитывается графически. 1. Дифракция на круглом отверстии. Сферическая волна, распространяющаяся из точечного источника S, встречает на своем пути экран с круглым отверстием радиуса . Дифракционную картину наблюдаем на экране (Э) в точке В, лежащей на линии, соединяющей S с центром отверстия. b-расстояние от вершины волновой поверхности до т. В, а- радиус волновой поверхности. Разобьем открытую часть волновой поверхности Ф на зоны Френеля. Вид дифракционной картины зависит от числа зон Френеля, укладывающихся в отверстии:. ¨ в отсутствие непрозрачного экрана с отверстием в т. В амплитуда ¨ в отверстие укладывается нечетное число m зон Френеля, в т. В амплитуда больше, чем в отсутствие непрозрачного экрана. Напр., если в отверстие укладывается одна зона Френеля, в т. В амплитуда А=А1, вдвое больше, чем в отсутствие непрозрачного экрана (интенсивность света больше в четыре раза) – наблюдается максимум. ¨ в отверстие укладывается четное число m зон Френеля, в т. В амплитуда меньше, чем в отсутствие непрозрачного экрана. Напр., в отверстии укладываются две зоны Френеля, в т. В амплитуда (волны практически уничтожат друг друга из-за интерференции) – наблюдается минимум.
1) Дифракционная картина от круглого отверстия вблизи точки В будет иметь вид чередующихся темных и светлых колец с центрами в точке В (еслиm четное, то в центре будет темное кольцо, если т нечетное — то светлое кольцо), причем интенсивность максимумов убывает с расстоянием от центра картины. 2) Если отверстие освещается не монохроматическим, а белым светом, то кольца окрашены. 3) Число зон Френеля, укладывающихся в отверстии. Если и и радиус удовлетворяет условию (12.3), то отверстие оставит открытым (13.1) 4) Если диаметр отверстия велик - интерференционной картины не будет – свет будет распространяться почти так же, как в отсутствии экрана – прямолинейно, (точнее: чередование темных и светлых колец наблюдается лишь в очень узкой области на границе геометрической тени; внутри этой области освещенность оказывается практически постоянной). Замечание: Расчет произведен для точки, лежащей против центра отверстия. Расчет амплитуды результирующих колебаний в других точках участках экрана более сложен, так как соответствующие им зоны Френеля частично перекрываются непрозрачным экраном. Правомерность деления волнового фронта на зоны Френеля подтверждена экспериментально при помощи зонных пластинок – стеклянных пластинок, состоящих из системы чередующихся прозрачных и непрозрачных колец, построенных по принципу расположения зон Френеля. Величину можно сделать очень большой при помощи зонной пластинки, в которой непрозрачное покрытие закрывает все четные зоны Френеля и оставляет открытыми все нечетные зоны. Если общее число зон, умещающихся на пластинке, равно , то . Если не слишком велико, то и освещенность экрана в т. В в раз больше, чем при беспрепятственном распространении света от источника в т. В. 2. Дифракция на диске. Сферическая волна, распространяющаяся от точечного источника S, встречает на своем пути диск. Дифракционную картину наблюдаем на экране (Э) в точке В, лежащей на линии, соединяющей S с центром диска. Закрытый диском участок фронта волны надо исключить из рассмотрения и зоны Френеля строить начиная с краев диска. Пусть диск закрывает т первых зон Френеля. 1. В точке В всегда наблюдается интерференционный максимум (светлое пятно), соответствующий половине действия первой открытой зоны Френеля . 2. Центральный максимум окружен концентрическими темными и светлыми кольцами, а интенсивность максимумов убывает с расстоянием от центра картины. С увеличением радиуса диска первая открытая зона Френеля удаляется от т. S и увеличивается угол между нормалью к поверхности этой зоны и направлением на т. В. 3. С увеличением размеров диска интенсивность центрального максимума уменьшается. 4. При больших размерах диска за ним наблюдается тень, вблизи границ которой имеет место слабая дифракционная картина - свет распространяющимся почти прямолинейно. Замечание: Если форма краев экранов и отверстий в них отличается от геометрически идеальной, то дифракционные закономерности не выполняются. Степень отклонения от этих закономерностей определяется величиной , где —длина основания или высота выступов (шероховатостей) на краях экрана, b—расстояние от экрана до точки наблюдения, —длина волны: а) < 1 — нарушения дифракционной картины практически отсутствуют; б) ~1—дифракционная картина сглаживается и может исчезнуть; в) >1—дифракционные полосы или кольца повторяют конфигурацию выступов и впадин на внешних краях экранов или краях отверстий в них. 14. Дифракция плоских световых волн Дифракция плоских световых волн (дифракция в параллельных лучах) -источник света и точка наблюдения бесконечно удалены от препятствия, вызвавшего дифракцию. Дифракция света наблюдается на: 1) плоской одномерной решетке (штрихи нанесены перпендикулярно некоторой прямой линии); · 2) двумерной решетке (штрихи нанесены во взаимно перпендикулярных направлениях в одной и той же плоскости); · 3) пространственных (трехмерных) решетках — пространственных образованиях, в которых элементы структуры подобны по форме, имеют геометрически правильное и периодически повторяющееся расположение, а также постоянные (периоды) решеток, соизмеримые с длиной волны электромагнитного излучения, подобные пространственные образования должны иметь периодичность по трем не лежащим в одной плоскости направлениям. В качестве пространственных дифракционных решеток могут быть использованы кристаллические тела, так как в них неоднородности (атомы, молекулы, ионы) регулярно повторяются в трех направлениях. · · Замечания: · 1. Для наблюдения дифракционной картины необходимо, чтобы постоянная решетки была того же порядка, что и длина волны падающего излучения. · 2. Световые волны будем считать плоскими монохроматическими. · 3. При расчете дифракционной картины на щели и одномерной решетке считается, что свет падает нормально. ·
|
||||
Последнее изменение этой страницы: 2016-04-20; просмотров: 631; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.142.251.204 (0.007 с.) |