Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Расчёт с помощью закона бс магнитного поля на оси кругового витка с током. Аналогия с электрическим полем диаполя.Содержание книги
Поиск на нашем сайте
Напряженностью магнитного поля называется отношение механической силы, действующей на положительный полюс пробного магнита, к величине его магнитной массы или механическая сила, действующая на положительный полюс пробного магнита единичной массы в данной точке поля.Напряженность изображается вектором H, имеющим направление вектора механической силы f: .Элемент тока — векторная величина, равная произведению тока проводимости вдоль линейного проводника и бесконечно малого отрезка этого проводника. .Примечание. Элемент тока имеет направление, совпадающее с направлением этого отрезка.Закон Био—Савара—Лапласа — физический закон для определения вектора индукции магнитного поля, порождаемого постоянным электрическим током. Круговой проводник с током. Возьмем проводник, согнутый по кругу в виде витка, и пропустим по нему ток (рис. 75). Из чертежа видно, что магнитные линии замыкаются вокруг проводника с током и имеют форму окружностей. Магнитные линии с одной стороны входят в плоскость кругового проводника, с другой — выходят.Направление поля кругового тока можно определить, пользуясь «правилом буравчика».Буравчик нужно расположить по оси кругового тока перпендикулярно его плоскости. Если теперь вращать ручку буравчика по направлению тока в контуре, то поступательное движение буравчика покажет направление магнитного поля. Напряженность магнитного поля в центре витка с током определяется по формуле:
Потоком вектора магнитной индукции (магнитным потоком) через площадку dS называется скалярная физическая величина, равная где Bn=В cos a — проекция вектора В на направление нормали к площадке dS (a — угол между векторами n и В), dS=dSn — вектор, модуль которого равен dS, а направление его совпадает с направлением нормали n к площадке. Поток вектора В может быть как положительным, так и отрицательным в зависимости от знака cos a (определяется выбором положительного направления нормали n). Поток вектора В связывают с контуром, по которому течет ток. В таком случае положительное направление нормали к контуру нами уже определено: оно связывается с током правилом правого винта. Таким образом, магнитный поток, создаваемый контуром через поверхность, ограниченную им самим, всегда положителен. Поток вектора магнитной индукции ФB через произвольную поверхность S Для однородного поля и плоской поверхности, расположенной перпендикулярно вектору В, Bn=B=const и Из этой формулы определяется единица магнитного потока вебер (Вб): 1 Вб — магнитный поток, проходящий сквозь плоскую поверхность площадью 1 м2, расположенную перпендикулярно однородному магнитному полю, индукция которого равна 1 Тл (1 Вб=1 Тл×м2). Теорема Гаусса для поля В: поток вектора магнитной индукции сквозь любую замкнутую поверхность равен нулю: Эта теорема отражает факт отсутствия магнитных зарядов, вследствие чего линии магнитной индукции не имеют ни начала, ни конца и являются замкнутыми. Итак, для потоков векторов В и Е сквозь замкнутую поверхность в вихревом и потенциальном полях получаются различные. В качестве примера рассчитаем поток вектора В сквозь соленоид. Магнитная индукция однородного поля внутри соленоида с сердечником с магнитной проницаемостью m, согласно, равна Магнитный поток сквозь один виток соленоида площадью S равен а полный магнитный поток, сцепленный со всеми витками соленоида и называемый потокосцеплением, . Магнитный момент контура с током. Контур с током в магнитном поле. Опыт показывает, что электрические токи взаимодействуют между собой, напрмер, токи I притягиваются, а токи отталкиваются. Взаимодействие токов осуществляется через поле, которое называется магнитным. Следовательно, движущиеся заряды (токи) изменяют свойства окружающего их пространства - создают в нем магнитное поле. Это поле проявляется в том, что на движущиеся в нем заряды (токи) действуют силы. Подобно тому, как для исследования электрического поля мы использовали пробный заряд, применим для исследования магнитного поля пробный ток, циркулирующий в плоском замкнутом контуре очень малых размеров. Будем называть такой контур пробным контуром. Ориентацию его в пространстве характеризует направление нормали n(вектор) к контуру, восстанавливаемой по правилу правого буравчика: вращаем рукоятку правого буравчика по направлению тока в контуре, тогда направление его поступательного движения даст направление нормали n(вектор) (см. рис. 1). Помещая пробный контур в магнитное поле, обнаружим, что поле стремится повернуть контур (нормаль) в определенном направлении. Вращающий момент, действующий на контур, зависит как от свойств магнитного поля в данной точке, так и от свойств контура. Оказывается, что максимальная величина вращающего момента пропорциональна IS, т.е. Mmax ~ IS, где I -ток контуре, S - площадь контура с током, (рис. 1). Векторную величину (1) называют магнитным моментом контура, который в СИ измеряется в А×м2. На пробные контуры с разными рm, помещаемыми в данную точку магнитного поля, будут действовать разные по величине максимальные вращающие моменты М, но отношение Мmax/pm будет для всех контуров одинаково, оно будет являться силовой характеристикой магнитного поля, которая называется магнитной индукцией В = Мmax/pm Магнитная индукция есть вектор, направление которого совпадает с направлением нормали контура с током, свободно установившегося во внешнем магнитном поле(см.рис.2) Поле вектора В можно представить с помощью силовых линий, (см. рис. 2), как и поле вектора таким образом В является аналогом Е.Магнитная индукция в СИ измеряется в теслах: 1 Тл=1 Нм/1 А×м2. Тесла равен магнитной индукции однородного поля, в котором на плоский контур с током, который имеет магнитный момент 1 А м2, действует максимальный вращающий момент, равный 1 Нм. На контур с током, помещенный в магнитное поле с индукцией действует вращающий момент Величина его M =. Работа по перемещению проводника и контура с током в магнитном поле. Работа, совершаемая проводником с током при перемещении, численно равна произведению тока на магнитный поток, пересечённый этим проводником. Рассмотрим контур с током, образованный неподвижными проводами и скользящей по ним подвижной перемычкой длиной l (рис. 2.17). Этот контур находится во внешнем однородном магнитном поле В,перпендикулярном к плоскости контура. При показанном на рисунке направлении тока I, вектор В сонаправлен с n. На элемент тока I (подвижный провод) длиной l действует сила Ампера, направленная вправо: Пусть проводник l переместится параллельно самому себе на расстояние. При этом совершится работа: Итак: Формула остаётся справедливой, если проводник любой формы движется под любым углом к линиям вектора магнитной индукции. Работа, совершаемая при перемещении замкнутого контура с током в магнитном поле, равна произведению величины тока на изменение магнитного потока,сцепленного с этим контуром. Рассмотрим прямоугольный контур с током 1-2-3-4-1 (рис. 2.18). Магнитное поле направлено от нас перпендикулярно плоскости контура. Магнитный поток, пронизывающий контур, направлен по нормали n к контуру, поэтому. Рис. 2.18 Переместим этот контур параллельно самому себе в новое положение 1'-2'-3'-4'-1'. Магнитное поле в общем случае может быть неоднородным и новый контур будет пронизан магнитным потоком. Площадка 4-3-2'-1'-4, расположенная между старым и новым контуром, пронизывается потоком. Полная работа по перемещению контура в магнитном поле равна алгебраической сумме работ, совершаемых при перемещении каждой из четырех сторон контура: , где, равны нулю, т.к. эти стороны не пересекают магнитного потока, при своём перемещение (очерчивают нулевую площадку). Провод 1–2 перерезает поток , но движется против сил действия магнитного поля. Тогда общая работа по перемещению контура: или здесь – это изменение магнитного потока, сцепленного с контуром.
|
||||
Последнее изменение этой страницы: 2016-04-20; просмотров: 565; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.139.79.187 (0.01 с.) |