Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Система уравнений Максвелла.Содержание книги
Поиск на нашем сайте
Приведем законы, которым подчиняется поведение электрического и магнитного полей, лежащие в основе теории электромагнетизма. Эти законы, являющиеся обобщением опыта, формулируются ниже в интегральной форме, так как именно в таком виде обычно выражаются данные эксперимента. Используя основные положения векторного анализа, можно записать эти законы электромагнитного поля в дифференциальной форме. Если исследуют электромагнитное поле в каком-либо веществе, изотропно заполняющем пространство, то значение векторов Е и В получаются при усреднении микроскопических величин < Eмикр>=Е и < Hмикр>=В. Такая запись позволяет оперировать с мгновенными напряженностями электрического и магнитного полей в любой точке пространства. Усреднение микроскопических величин законно в том случае, линейные размеры области, где < Eмикр> и< Hмикр> можно считать неизменными,значительно превышают размеры атомов (молеукл). Длина волны является тем отрезком, на котором напряженность поля сильно изменяется. Поэтому усреднение можно проводить лишь в том случае, когда значительно больше атомных размеров.Такое равенство соблюдается для всего оптического диапазона спектра, включая короткие ультрафиолетовые лучи. Сложнее обстоит дело в рентгеновской области спектра, где см, т.е. того же порядка что размеры атомов. При переходе к дифференциальной форме законов электромагнитного поля используют следующие теоремы векторного анализа: Теорема Гаусса о преобразовании поверхностного интеграла в объемный: . (2.3.1) Теорема Стокса о преобразовании интеграла по замкнутой кривой в поверхностный интеграл (поток ротора через поверхность, охватываемую исследуемой кривой): . (2.3.2) Итак, вспомним законы электрического и магнитного полей. Первый из них – основной закон электростатики – закон Кулона. Как следствие этого закона формулируется теорема Гаусса о потоке, которая при наличии диэлектриков в исследуемом пространстве записывается в виде . (2.3.3) Отсюда указанным выше способом переходим к дифференциальной форме закона , (2.3.3а) где D – вектор электрического смещения, - объемная плотность зарядов. Существенно, что выражения (2.3.3) и (2.3.3а), полученные из уравнений электростатики, обобщаются Максвеллом для переменных полей, где D и зависят от времени.
Отсутствие в природе магнитных зарядов (монополей) приводит к выражению , (2.3.4) которое преобразуется к виду div B =0. (2.3.4а) Эти формулы соответствуют хорошо известным модельным представлением о силовых линиях электрического поля, начинающихся на положительных зарядах и заканчивающихся на отрицательных, тогда как линии магнитного поля замкнуты и охватывают породившие их токи. Введение понятия линий электрического и магнитного полей совершенно не обязательно (смысл законов содержится в приведенных формулах), но, как и во многих случаях, наглядность модельных представлений помогает пониманию явления. Переходя к описанию свойств электрического тока. сформулируем основной закон о зависимости напряженности магнитного поля от силы породившего его тока. Этот закон обычно связывают с именами Био, Савара и Лаплпса. Запишем его в видет, который называют теоремой о циркуляции вектора Н: (2.3.5) Дифференциальная форма этого закона получается применением теоремы Стокса к равенству (2.3.5) и описывает плотности тока j с напряженностью магнитного поля в данной точке: (2.3.6) Как известно, Максвелл ввел ток смещения, плотность которого удовлетворяет соотношению Ток проводимости и ток смещения дополняют друг друга, образуя полный ток плотностью , которая, согласно Максвеллу, и фигурирует в уравнении (2.3.6) последним из требующихся нам фундаментальных соотношений является математическая формулировка знаменитого открытия Фарадея – закона электромагнитной ин6дукции. , (2.3.7) в котором электродвижущая сила , возникающая в замкнутом контуре, связывается со скоростью изменения потока магнитной индукции Ф, пронизывающего этот контур. При соблюдении некоторых условий эксперимента (в частности, если контур с током неподвижен и не деформируется за время изменений) справедлива следующая интегральная форма записи закона индукции: (2.3.8) откуда легко получается дифференциальная форма закона (2.3.9) Здесь уместно сделать следующее значения: 1.Хорошо известны соображения о вихревом характере электрического поля, порождаемого изменяющимся во времени магнитным полем. Это переменное электрическое поле существенно отличается от потенциального электростатического поля, создаваемого системой неподвижных электрических зарядов, для которого rot E= 0. В последующем нас будет интересовать именно переменное электрическое поле. Но, как было показано Максвеллом, наличие переменного электрического поля с неизбежностью приводит к возникновению связанного с ним магнитного поля и поэтому нужно говорить о едином электромагнитном поле, характеризуемом в каждой точке пространства взаимосвязанными ортогональными векторами Е и В.
2.Введение Максвеллом понятий тока смещения в начале выглядело как гениальная догадка. Но несовместимость сформулированного уравнения электромагнитного поля (2.3.6) и уравнения непрерывности , (2.3.10) выражающего одно из самых общих свойств материи – закон сохранения электрического заряда, - с неизбежностью приводит к необходимости введения дополнительного слагаемого в правую часть уравнения поля. Следовательно, уравнение (2.3.6) должно иметь вид . Именно это изменяющееся во времени электрическое поле, столь неудачно названо «током смещения», и связанное с ним магнитное поле будут играть главную роль в дальнейшем изложении. Итак, имеем уравнение электромагнитного поля в следующем виде: , , , . (2.3.11) Их нужно дополнить «материальными» уравнениями, учитывающими соотношения между векторами Е, D, В, Н и j. При отсутствии феромагнитных сегнетоэлектрических материалов для изотропных сред можно записать эти уравнения при помощи трех констант: (электропроводность), (диэлектрическая проницаемость) и (магнитная проницаемость0, постулируя линейную связь между D и Е, В и Н, j и E, т.е. D = E, В = Н, j = E. (2.3.12) Следует также сформулировать граничные условия для уравнений электромагнитного поля, из которых наиболее широко будем использовать равенство тангенциальных составляющих Е и Н на границе раздела двух сред, т.е. , (2.3.13) если предположить, что граничащие среды разделены слоем, в котором изменяются непрерывно, а j и конечны,то при стремлении к нулю толщины этого слоя уравнения (2.3.9) и (2.3.6) сведутся к равенствам (2.3.14). Однако при решении конкретных задач часто возникает необходимость задать значение искомых функций на границе исследуемой области. Такие граничные условия определяются условиями эксперимента и не вытекают из уравнений электромагнитного поля. Они должны быть добавлены к системе уравнений (2.3.11). В частности, при рассмотрении безграничного пространства часто задают вид тех или иных функций на бесконечности, руководствуясь физическими условиями решаемой задачи. Система уравнений, включающая в себя уравнения электромагнитного поля, «материальные» соотношения и граничные условия, названа системой уравнений Максвелла и играетв электродинамике ту же роль. что и аксиматика уравнений Ньютона в классической механике.
|
||||||
Последнее изменение этой страницы: 2016-12-27; просмотров: 196; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.58.61.176 (0.01 с.) |