Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Понятие множества и элемента множестваСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Множество – одно из основных понятий современной математики, используемое почти во всех ее разделах. Во многих вопросах приходится рассматривать некоторую совокупность элементов как единое целое. Так, биолог, изучая животный мир и растительный мир данной области, классифицирует все особи по видам, виды по родам. Каждый вид является некоторой совокупность живых существ, рассматриваемой как единое целое. Для математического описания таких совокупностей и было введено понятие множества. По словам одного из создателей теории множеств – немецкого математика Георга Кантора (1845–1918), «множество есть многое, мыслимое нами как целое». Разумеется, эти слова не могут рассматриваться как математически строгое определение множества, такового определения не существует, поскольку понятие множества является исходным, на основе которого строятся остальные понятия математики. Но из этих слов ясно, что можно говорить о множестве чисел от 1 до 10, натуральных числах, множестве треугольников и квадратов на плоскости. Понятие множества является одним из основных понятий математики и поэтому не определяется через другие. Его можно пояснить на примерах. Так, можно говорить о множестве учащихся некоторого класса, о множестве гласных букв русского алфавита, о множестве натуральных чисел. Математический смысл слова «множество» отличается от того, как оно используется в обычной речи, где его связывают с большим количеством предметов. В математике этого не требуется. Здесь рассматривают множество, состоящее из одного объекта, и множество, не содержащее ни одного объекта. В основном множества обозначают буквами латинского алфавита: A, B, C, …, Z, L. Определение. Множество, не содержащее ни одного объекта, называют пустым и обозначают знаком Æ. Определение. Объекты, из которых образовано множество, называют его элементами. Элементы множества принято обозначать строчными буквами латинского алфавита: a, b, c, …, z. В математике и других науках нередко приходится выяснять, принадлежит какой-либо объект рассматриваемому множеству или не принадлежит. Например, мы говорим, что число 5 натуральное. Другими словами, число 5 принадлежит множеству натуральных чисел. Или, например, число 0,45 не является натуральным числом. Это означает, что число 0,45 не принадлежит множеству натуральных чисел. Предложение вида “ Объект а принадлежит множеству А” можно записать, используя символы: аÎА. Прочитать его можно по-разному: Объект а принадлежит множеству А. Объект а – элемент множества А. Множество А содержит элемент а. Предложение “ Объект а не принадлежит множеству А” можно записать так: а Ï А. Его читают: Объект а не принадлежит множеству А. Объект а не является элементом множества А. Множество А не содержит элемента а. Пример Пусть А – множество однозначных чисел. Тогда предложение “7ÎА” можно прочитать: “Число 7 однозначное”, а запись “ 14Ï А” означает: “Число 14 не является однозначным”. Множества бывают конечными и бесконечными. Так, множество дней недели конечно, а множество точек прямой бесконечно. Бесконечными множествами являются и такие множества, как множество натуральных чисел (N), множество целых чисел (Z), множество рациональных чисел (Q), множество действительных чисел (R). 2.Способы задания множества Множество можно задать, перечислив все его элементы. Например, множество А состоит из чисел 3, 4, 5 и 6. Поскольку все его элементы окажутся перечисленными, то это множество задано. При этом возможна запись А = {3, 4, 5, 6}, в которой перечисленные элементы заключаются в фигурные скобки. Однако если множество бесконечно, то его элементы перечислить нельзя. Трудно, таким образом, и задать конечное множество с большим числом элементов. В таких случаях применяют другой способ задания множеств: указывают характеристическое свойство его элементов. Определение. Характеристическое свойство – это такое свойство, которым обладает каждый элемент, принадлежащий множеству, и не обладает ни один элемент, который ему не принадлежит. Пример Множество А – двузначных чисел. Свойство, которым обладает любой элемент данного множества, - “быть двузначным числом”. Это характеристическое свойство дает возможность решить вопрос о том, принадлежит ли какой-либо объект множеству А или не принадлежит. Так, число 21 содержится в множестве А, поскольку оно двузначное, а число 145 множеству А не принадлежит – оно не является двузначным. Иногда одно и тоже множество можно задать, указав различные характеристические свойства его элементов. Например, множество квадратов можно задать как множество прямоугольников с равными сторонами и как множество ромбов с прямыми углами. Вывод: чтобы задать некоторое множество, достаточно либо перечислить все его элементы, либо указать характеристическое свойство его элементов. Второй способ более общий: он позволяет задавать и конечные и бесконечные множества в отличие от первого способа, который, как правило, можно использовать для задания конечных множеств с небольшим количеством элементов. Хотя первый способ используется иногда и для задания бесконечных множеств. Например, множество натуральных чисел может быть задано в виде N = {1, 2, 3, …}. Однако такой способ записи возможен лишь тогда, когда по записанной части множества ясно, что означает многоточие. Одно и тоже множество может быть задано и первым и вторым способом. Пример Множество В натуральных чисел, меньших 7, заданное посредством указания характеристического свойства его элементов, можно задать и так: В={1,2,3,4, 5, 6}, т.е. перечислив все его элементы.
|
||||
Последнее изменение этой страницы: 2016-12-28; просмотров: 792; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.155.91 (0.009 с.) |