Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Истинность высказываний с кванторамиСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Выясним теперь, как устанавливают значения истинности высказываний, содержащих кванторы. Рассмотрим сначала высказывание с квантором общности, т.е. высказывание вида (" х Î Х) А(х). В нем утверждается, что для любого х из множества Х истинно А(х), поэтому, чтобы убедится в истинности этого высказывания, надо показать, что множество истинности ТА высказывательной формы А(х) совпадает с множеством Х (ТА = Х). Чтобы убедится в ложности высказывания (" х Î Х) А(х), достаточно показать, что ТА ¹ Х, т.е. показать, что существует такое значение х Î Х, при котором высказывательная форма обращается в ложное высказывание. Задача 2. Установить, истинны или ложны следующие высказывания: а) Для каждого х из множества {0, 1, 4} значение выражения (4–х): (2х+ 1) есть число целое. б) Произведение двух любых последовательных натуральных чисел кратно 2. в) Всякое натуральное число делится на 5. Решение. а) Если мы хотим убедиться в истинности данного высказывания, то надо показать, что при подстановке каждого числа из множества{0, 1, 4}в выражение (4 – х): (2х +1) получается целое число. Имеем: если х = 0, то (4-0): (2×0+1)=4; если х = 1, то (4-1): (2×1+1)=1; если х = 4, то (4-4): (2×4+1)=0. Действительно, значение выражения (4 – х): (2х +1) при всех заданных значениях х есть число целое. Установили мы это путем перебора всех возможных случаев. б) Воспользуемся результатом задачи 1 (случай б) и представим данное высказывание в таком виде: (" хÎ N) х (х+1) 2. Мы не знаем, истинно оно или ложно, поэтому рассмотрим несколько случаев. Если х =1, то произведение 1×2 кратно 2, так как на 2 делится второй множитель. Если х =2, то произведение 2 × 3 тоже кратно 2, так как на 2 делится первый множитель. Если х = 7, то и в этом случае 7 × 8 кратно 2, поскольку второй множитель 8 делится на 2. Исходя из рассмотренных случаев, можно предположить, что данное высказывание истинное, но убедится в этом путем перебора (как в первом предложении) нельзя, поскольку невозможно перебрать все натуральные значения х. Будем рассуждать. Из двух последовательных натуральных чисел одно обязательно четное. Но если в произведении один из множителей делится на 2, то, как известно, и все произведение делится на 2. Следовательно, при любом натуральном х произведение х (х+1) делится на 2. в) Высказывание «всякое натуральное число делится на 5» – ложное. Убедится в этом можно, назвав натуральное число, которое не делится на 5, например число 12. В математике говорят, что в ложности данного высказывания мы убедились, приведя контрпример. Замечание. Истинность высказывания с квантором общности устанавливается путем доказательства. Показать ложность таких высказываний можно, приведя контрпример. Выясним, как устанавливается значение истинности высказываний, содержащих квантор существования. В высказывании ($ х Î Х) А(х) утверждается, что в множестве Х есть такой элемент х, который обладает свойством А. Поэтому оно будет истинно, если множество истинности высказывательной формы А(х) не пусто (ТА ¹Æ). Для того чтобы показать это, достаточно найти такое значение переменной х, при котором высказывательная форма А(х) обращается в истинное высказывание, т.е. привести пример. Высказывание ($ х Î Х) А(х) ложно в том случае, когда ТА = Æ. Убедится в этом можно лишь путем доказательства. Задача 3. Установить, истинны или ложны следующие высказывания: а) Среди треугольников есть прямоугольные. б) Некоторые прямоугольные треугольники являются равносторонними. Решение. а) Данное высказывание содержит квантор существования, который выражен словом «есть». Чтобы убедится в истинности такого высказывания, достаточно привести пример. В данном случае прямоугольный треугольник можно начертить. б) В этом случае квантор существования выражен словом «некоторые». Если считать данное высказывание истинным, то надо привести пример, т.е. попытаться начертить треугольник, который был бы одновременно прямоугольным и равносторонним. Из того, что это не удается начертить, еще не следует вывод о ложности данного высказывания. В этом надо убедится путем доказательства. Действительно, если треугольник прямоугольный, то в нем один угол равен 90°, а в равностороннем все углы 60°. Следовательно, ни один прямоугольный треугольник не может быть равносторонним. Поэтому данное высказывание ложное. Замечание. Истинность высказывания с квантором существования устанавливается при помощи конкретного примера. Чтобы убедится в ложности такого высказывания, необходимо провести доказательство. Заметим, что убедится в ложности высказывания – это значит опровергнуть его.
|
||||
Последнее изменение этой страницы: 2016-12-28; просмотров: 2390; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.22.74.192 (0.006 с.) |