Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Взаимно однозначные соответствияСодержание книги
Поиск на нашем сайте
В математике изучают различные виды соответствий. Это не случайно, поскольку взаимосвязи, существующие в окружающем нас мире многообразны. Для учителя, обучающего математике младших школьников, особую значимость имеют взаимно однозначные соответствия. Определение. Взаимно однозначным соответствием между множествами Х и У называется такое соответствие, при котором каждому элементу множества Х сопоставляется единственный элемент множества У и каждый элемент множества У соответствует только одному элементу множества Х. Рассмотрим примеры взаимно однозначных соответствий. Пусть Х – множество кругов, У – множество квадратов и соответствие между ними задано при помощи стрелок.
Это соответствие взаимно однозначное, так как каждому кружку из множества Х сопоставляется единственный квадрат из множества У и каждый квадрат из У соответствует только одному кружку из множества Х. Пример Пусть Х – множество действительных чисел, У – множество точек координатной прямой. Соответствие между ними таково: действительному числу сопоставляется точка координатной прямой. Это соответствие взаимно однозначное, так как каждому действительному числу сопоставляется единственная точка координатной прямой и каждая точка на прямой соответствует только одному числу. В математике взаимно однозначное соответствие между множествами Х и У часто называют взаимно однозначным отображением множества Х на множество У. Равномощные множества Определение. Множества Х и У называются равномощными, если между ними можно установить взаимно однозначное соответствие. Если множества Х и У равномощны, то пишут Х ~ У. Нетрудно видеть, что множества рассмотренные в предыдущих примерах равномощны. Равномощными могут быть как конечные, так и бесконечные множества Равномощные конечные множества называют еще равночисленными. В начальном обучении математике равночисленность выражается словами «столько же» и может использоваться при ознакомлении учащихся со многими понятиями. Например, чтобы ввести равенство чисел, сравнивают два множества, устанавливая между их элементами взаимно однозначное соответствие. Например, пишут, что 5 = 5, так как кружков столько же, сколько квадратов. Понятие равночисленности множеств лежит и в основе определения отношений «больше на …» и «меньше на…». Например, чтобы утверждать, что 6 больше 4 на 2, сравнивают два множества, устанавливая взаимно однозначное соответствие между множеством Х, в котором 4 элемента, и подмножеством У1 другого множества У, в котором 6 элементов, и делают вывод: треугольников столько же, сколько кружков, и еще 2. Другими словами, треугольников на 2 больше, чем кружков. Х
У1 У Как уже было сказано, равномощными могут быть и бесконечные множества. Пример Пусть Х – множество точек отрезка АВ, У – множество точек отрезка СD, причем длины отрезков различны. Так как между данными множествами можно установить взаимно однозначное соответствие, то множества точек АВ и СD равномощны. N
A M B
С M’ D Пример Рассмотрим множество N натуральных чисел и множество У – четных натуральных чисел. Они равномощны, так как между их элементами можно установить взаимно однозначное соответствие: N: 1 2 3 … п …
У: 2 4 6 … 2п … Замечание. На первый взгляд кажется парадоксальным тот факт, что можно установить взаимно однозначные соответствия между множеством и его частью: для конечных множеств такая ситуация невозможна. Однако в математике доказано, что для бесконечного множества А всегда найдется такое его подмножество В, что между А и В можно установить взаимно однозначное соответствие. Иногда это утверждение считают определением бесконечного множества. Определение. Если бесконечное множество равномощно множеству N натуральных чисел, его считают счетным. Любое бесконечное подмножество множества N счетно: чтобы пронумеровать его элементы, надо расположить элементы подмножества в порядке возрастание и нумеровать один за другим. Так, счетно множество всех нечетных натуральных чисел, множество натуральных чисел, кратных 5 и др. Счетными являются также множества всех целых чисел, всех рациональных. Существуют ли множества, отличные от счетных? Доказано, что бесконечным множеством, не равномощным множеству N натуральных чисел, является множество R всех действительных чисел.
|
||||
Последнее изменение этой страницы: 2016-12-28; просмотров: 772; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.216.244.98 (0.009 с.) |