Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву
Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Моделирование в процессе решения текстовых задачСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Текстовая задача – это словесная модель некоторого явления (ситуации, процесса). Чтобы решить такую задачу, надо перевести ее на язык математических действий, т.е. построить математическую модель. Вообще, математическая модель – это описание какого-либо реального процесса на математическом языке. Математической моделью текстовой задачи является выражение (либо запись по действиям), если задача решается арифметическим методом, и уравнение (либо система уравнений), если задача решается алгебраическим методом. В процессе решения задачи четко выделяются три этапа математического моделирования: 1 этап – это перевод условий задачи на математический язык; при этом выделяются необходимые для решения данные и искомые и математическими способами описываются связи между ними; 2 этап – внутримодельное решение (т.е. нахождение значения выражения, выполнение действий, решение уравнения); 3 этап – интерпретация, т.е. перевод полученного решения на тот язык, на котором была сформулирована задача. Проиллюстрируем сказанное на примере решения алгебраическим методом следующей задачи: «В одном вагоне электропоезда было пассажиров в 2 раза больше, чем в другом. Когда из первого вагона вышли 3 человека, а во второй вагон вошли 7 человек, то в обоих вагонах пассажиров стало поровну. Сколько пассажиров было в каждом вагоне первоначально?» Обозначим через х первоначальное число пассажиров во втором вагоне. Тогда число пассажиров в первом вагоне – 2х. Когда из первого вагона вышли 3 человека, в нем осталось 2х – 3 пассажира. Во второй вагон вошли 7 человек, значит, в нем стало х + 7 пассажиров. Так как в обоих вагонах пассажиров стало поровну, то можно записать, что 2х – 3 = х + 7. Получили уравнение – это математическая модель данной задачи. Следующий этап – решение полученного уравнения вне зависимости от того, что в нем обозначает переменная х: переносим в левую часть члены уравнения, содержащие х, а в правую – не содержащие х, причем у переносимых членов знаки меняем на противоположные: 2х – х = 7 + 3. Приводим подобные члены и получаем, что х = 10. Последний, третий этап – используем полученное решение, чтобы ответить на вопрос задачи: во втором вагоне было первоначально 10 человек, а в первом – 20 (10·2=20). Наибольшую сложность в процессе решения текстовой задачи представляет перевод текста с естественного языка на математический, т.е. 1 этап математического моделирования. Чтобы облегчить эту процедуру, строят вспомогательные модели – схемы, таблицы и др. Тогда процесс решения задачи можно рассматривать как переход от одной модели к другой: от словесной модели реальной ситуации, представленной в задаче, к вспомогательной (схемы, таблицы, рисунки и т.д.); от нее – к математической, на которой и происходит решение задачи. Такой подход к процессу решения задачи разделяют и психологи. Они считают, что процесс решения задачи есть сложный процесс поиска системы моделей и определенной последовательности перехода от одного уровня моделирования к другому, более обобщенному, что решение задачи человеком есть процесс ее переформулирования. При этом используется такая операция мышления, как анализ через синтез, когда объект в процессе мышления включается во все новые связи и в силу этого выступает во все новых качествах. Главным средством переформулирования является моделирование. Прием моделирования заключается в том, что для исследования какого-либо объекта (в нашем случае текстовой задачи) выбирают (или строят) другой объект, в каком-то отношении подобный тому, который исследуют. Построенный новый объект изучают, с его помощью решают исследовательские задачи, а затем результат переносят на первоначальный объект. Модели бывают разные, и поскольку в литературе нет единообразия в их названиях, уточним терминологию, которую будем использовать в дальнейшем. Все модели можно разделить на схематизированные и знаковые по видам средств, используемых для построения. Схематизированные модели, в свою очередь, делятся на вещественные и графические в зависимости от того, какое действие они обеспечивают. Вещественные (или предметные) модели текстовых задач обеспечивают физическое действие с предметами. Они могут строиться из каких – либо предметов (пуговиц, спичек, бумажных полосок и т. д.), они могут быть представлены разного рада инсценировками сюжета задач. К этому виду моделей причисляют и мысленное воссоздание реальной ситуации, описанной в задаче, в виде представлений. Графические модели используются, как правило, для обобщенного, схематического воссоздания ситуации задачи. К графическим следует отнести следующие виды моделей: 1. рисунок; 2. условный рисунок; 3. чертеж; 4. схематичный чертеж (или просто схема). Разъясним суть этих моделей на примере задачи: «Лида нарисовала 4 домика, а Вова на 3 домика больше. Сколько домиков нарисовал Вова?» Рисунок в качестве графической модели этой задачи имеет вид: Л.
В.
? Условный рисунок может быть таким, как на рисунке: Л.
В.
? Чертеж как графическая модель выполняется при помощи чертежных инструментов с соблюдением заданных отношений. Л. 1д.
В. ?
Схематический чертеж (схема) может выполнятся от руки, на нем указываются все данные и искомые. 4 д. Л. 3 д. В.
? Знаковые модели могут быть выполнены как на естественном, так и на математическом языке. К знаковым моделям, выполненным на естественном языке, можно отнести краткую запись задачи, таблицы. Например, краткая запись задачи о домиках Лиды и Вовы может быть такой: Л. – 4 д. В. -?, на 3 д. больше, чем Таблица как вид знаковой модели используется главным образом тогда, когда в задаче имеется несколько взаимосвязанных величин, каждая из которых задана одним или несколькими значениями. Пример такой таблицы мы уже рассматривали. Знаковыми моделями текстовых задач, выполненных на математическом языке, являются: выражение, уравнение, система уравнений, запись решения по действиям. Поскольку на этих моделях происходит решение задачи, их называют решающими моделями. Остальные модели, все схематизированные и знаковые, выполненные на естественном языке, - это вспомогательные модели, которые обеспечивают переход от текста задачи к математической модели. Не следует думать, что всякая краткая запись или чертеж, выполненные для данной задачи, являются ее моделями. Так как модель – это своеобразная копия задачи, то на ней должны быть представлены все ее объекты, все отношения между ними, указаны требования. Для большинства текстовых задач приходится строить различные вспомогательные модели. С одной стороны, эти модели представляют собой результат анализа задачи, но с другой – построение таких моделей организует и направляет детальный и глубокий анализ задачи. Рассмотрим процесс решения арифметическим методом текстовой задачи о пассажирах в двух вагонах. Предварительный анализ задачи позволяет выделить ее объекты – это пассажиры в двух вагонах поезда. О них известно, что: 1) В первом вагоне в 2 раза больше пассажиров, чем во втором. 2) Из первого вагона вышли 3 пассажира. 3) Во второй вошли 7 пассажиров. 4) В первом и втором вагонах пассажиров стало поровну. В задаче два требования: 1) Сколько пассажиров было первоначально в первом вагоне? 2) Сколько пассажиров было первоначально во втором вагоне? Построим графическую модель данной задачи в виде схематического чертежа: 3 ч. I ? 7 ч. II ? По схеме сразу видно, что математическая модель данной задачи имеет вид: 7+ 3 – это число пассажиров во втором вагоне, а (7 + 3) · 2 – это число пассажиров в первом вагоне. Произведя вычисления, получаем ответ на вопрос задачи: во втором вагоне было 10 пассажиров, а в первом – 20 пассажиров.
|
||||
|
Последнее изменение этой страницы: 2016-12-28; просмотров: 2419; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 216.73.216.169 (0.009 с.) |