Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Отношения между множествами. ПодмножествоСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Даны два множества: А = {a, b, c, d, e} и B = {b, d, k, e}. Видим, что элементы b и d принадлежат одновременно множеству А и множеству В. Говорят, что b и d – общие элементы множеств А и В, а сами множества пересекаются. Замечание. Если множества не имеют общих элементов, то говорят, что они не пересекаются. Рассмотрим теперь множества А = {a, b, c, d, e} и В = {c, d, e}. Они пересекаются, и, кроме того, каждый элемент множества В является элементом множества А. В этом случае говорят, что множество В включено в А или что множество В является подмножеством множества А. Определение. Множество В называется подмножеством множества А, если каждый элемент множества В является также элементом множества А. Если В – подмножество множества А, то пишут: В Ì А – и читают: «В – подмножество А», «В – включается в А». Считают, что пустое множество является подмножеством любого множества, т. е. Æ Ì А, и что любое множество является подмножеством самого себя, т.е. А Ì А. Поэтому среди всех подмножеств заданного множества А должно быть обязательно пустое множество и само множество А. Примеры Выпишем все подмножества множества А = {2, 3, 4}. Среди них будут одноэлементные подмножества: {2}, {3}, {4}, двухэлементные: {2, 3}, {3, 4}, {2, 4}, а также само множество А = {2, 3, 4} и Æ. Таким образом, данное множество А имеет 8 подмножеств. Обратимся теперь к множествам А = {a, b, c, d, e} и В = {c, a, b, e, d}. Они пересекаются, и каждый элемент множества А является элементом множества В, т.е. А Ì В, и, наоборот, каждый элемент множества В является элементом множества А, т.е. В Ì А. В этом случае говорят, что множества А и В равны. Определение. Множества А и В называются равными, если А Ì В и В Ì А. Если множества А и В равны, то пишут: А = В. Круги Эйлера-Венна
Непересекающиеся множества изображают при помощи двух кругов, не имеющих общих точек (Рис. 3). Установить отношения между множествами – важное умение для учителя. Дело в том, что математика и другие науки изучают не только определенные объекты и явления, но и взаимосвязи, в том числе и отношения между множествами.
Следующий рисунок 6 говорит о том, что среди чисел, кратных 4, есть четные, но есть и такие, которые не делятся на 2, что не верно: нетрудно доказать, что любое число, кратное 4, четно. Следовательно, множество чисел, кратных 4, является подмножеством множества четных чисел. Эта связь изображена на последнем рисунке.
Например «Среди данных четырехугольников укажи прямоугольники». «Назови среди данных чисел четные» и т. д.
|
||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-12-28; просмотров: 895; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.146.37.242 (0.007 с.) |