Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Диалоговые методы решения задач по многим критериямСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Главный недостаток рассмотренных выше методов состоит в том, что в большинстве реальных ситуаций ЛПР не располагает до решения задачи информацией о ее свойствах, достаточной для надежного назначения требуемых от него величин. Поэтому, как правило, этими методами не удается за один раз получить приемлемое решение. А многократное применение с корректировкой назначаемых величин фактически переводит их в разряд интерактивных, но не приспособленных для дружественного общения с ЛПР, методов. Интерактивный процесс решения многокритериальной задачи реализуется путем диалога ЛПР с компьютером. При этом происходит чередование этапов вычислений, выполняемых компьютером, и корректировки и принятия решений ЛПР. Такая процедура позволяет ЛПР более полно и глубоко оценить взаимосвязи критериев и возможности оптимизируемой системы. Более того, в интерактивном процессе может развиваться формирование предпочтений, компромиссов и даже системы ценностей. Все это облегчает ЛПР нахождение решения, наилучшего с его точки зрения, и повышает уверенность в правильности выбора. Поэтому такая технология оказывается более реалистичной, более гибкой и более приемлемой для руководителей. Многочисленные интерактивные процедуры предлагают разные схемы решения многокритериальной задачи и предъявляют неодинаковые требования к ЛПР. При прочих равных условиях (сходимость, затраты ресурсов и др.) предпочтительнее те процедуры, которые генерируют только эффективные решения и вызывают у ЛПР меньше затруднений в выражении своих предпочтений. Метод уступок Предварительно ЛПР ранжирует критерии по важности. В результате критериям присваиваются номера в порядке убывания важности. После этого начинается основная часть диалога. Решается задача максимизации первого критерия при Х D. Если задача имеет множество оптимальных решений, то на нем ищется решение, наилучшее по второму критерию. Если и оно не единственно, то включается третий критерий, и так до достижения единственного решения. Иначе говоря, ищется лексикографически-оптимальное решение. ЛПР предъявляется полученное решение X1 со значениями всех критериев. ЛПР анализирует это решение и если оно его не устраивает, диалог продолжается. ЛПР просят указать, на какую величину он согласен снизить значение первого критерия с тем, чтобы улучшить значение второго. В результате формируется новая задача: f 2 ( X ) max, f 1 ( X ) , (10.22) X D, где - уступка по первому критерию. Снова ищется лексикографическое решение, начиная с задачи (10.22.). ЛПР оценивает предъявленное ему новое решение X2 и прежде всего улучшение второго критерия, которое определяется как разность в двух решениях: f 2(Х2 )-f 2(X1). За такое увеличение f 2 он платит цену, равную . Если значение f 2(Х2) не удовлетворяет ЛПР, он может увеличить уступку и снова решить задачу (10.22.). Возможность улучшения значения одного критерия за счет другого показана на рис 10.14. Решение по первому критерию соответствует точке B. Введение уступки позволяет получить решение с лучшим значением f 2 (точка A). Если решение X2 не обеспечивает приемлемого значения f 3, ЛПР должен назначить уступку по второму критерию - . Тогда решается задача f 3(Х)=> max, f 1(X) , f 2(X) , (10.23) X D. Аналогично формируются задачи по остальным критериям, если их значения не устраивают ЛПР. Очевидно, что в процессе поиска наилучшего решения ЛПР может возвращаться на любое число шагов назад, изменять свои уступки и получать новые решения. Тем самым он выявляет количественные взаимосвязи (замещения) критериев, что облегчает выбор окончательного решения. Пример 10.6. Решим задачу из примера 10.1. Пусть ЛПР представил ранжирование критериев в виде: f 1, f 3, f 2. Максимум f 1 достигается в точке А (рис.10.9), где =12, f 3=-30, f 2=18. ЛПР не удовлетворен значением критерия f 3 и готов пойти на снижение критерия f 1 на величину =7. В соответствии с рассмотренной процедурой в условия задачи вводится новое ограничение f 1 ( X ) или в явном виде - 3 x 1 + 2 x 2 5. В результате допустимое множество сузится до треугольника AMN (рис.10.15). Найдем решение, максимизирующее f 3 на этоммножестве. Оно лежит в вершине N, где f 1=5, f 3=-12,5 и f 2=7,5.Таким образом, за счет снижения первого критерия на 7 единиц увеличилось значение третьего критерия (второго по важности) на 17,5. Однако ЛПР не устраивает значение критерия f 2. Чтобы повысить его, ЛПР согласен уменьшить f 3 до -18, то есть уступает =5,5. Тогда условия задачи дополняются еще одним ограничением f 3 ( X ) -18 или - 2 x 1 + 5 х 2 18, и допустимое множество уменьшается до треугольника NPQ (рис.10.16). Максимизируя f 2, получим решение в точке Q со значениями критериев: f 1=5, f 3=-18, f 2=16. Как видно, второй критерий увеличился на 8,5 за счет снижения третьего на 5,5. Анализируя полученное решение, ЛПР либо принимает его за окончательное, либо, изменив уступки, продолжает поиск. Нетрудно убедиться в том, что решения формируемых задач, если они единственны, принадлежат паретовскому множеству исходной многокритериальной задачи.
|
||||
Последнее изменение этой страницы: 2016-08-12; просмотров: 641; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.137.178.122 (0.007 с.) |