Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Понятие базиса. Переход от одного базисного решения к другомуСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Здесь нам понадобятся некоторые понятия линейной алгебры.. Векторы А 1, А 2, …, АS являются линейно-независимыми, если равенство k 1 A 1 +k 2 A 2 +…+kSAS =0 выполняется только при k 1 =k 2 =…=kS= 0. Признаком линейной независимости векторов является ненулевое значение определителя, составленного из этих векторов, так как однородная система имеет единственное (нулевое) решение только при таком определителе. Если есть система линейно-независимых векторов, то любой другой вектор может быть выражен в виде их линейной комбинации и притом единственным образом: Ap=a 1 A 1 +a 2 A 2 +…+aSAS, pÏ[1, S]. В канонической форме условия записываются в виде (4.4) Пусть система (4.4) имеет базисное решение: (4.5) Тогда из (4.4) следует (4.6) Так как система (4.6) совместна, то ее определитель не равен нулю и, значит, векторы, входящие в (4.6), являются линейно-независимыми. Для их обозначения введем следующее понятие: система m линейно-независимых векторов, соответствующих базисным переменным, называется базисом. Таким образом, каждой экстремальной точке соответствует своё базисное решение и свой базис. Теперь, имея исходные базисное решение (4.5) и базис , построим новое базисное решение. Как следует из геометрических представлений, смежные вершины отличаются по составу базисных переменных только одной. Поэтому новое решение можно получить вводом в исходное небазисной переменной с одновременным переводом одной базисной переменной в небазисные. Пусть вводимой будет переменная с индексом rÏ[1,m], принимающая в новом решении некоторое положительное значение В новом решении, как в любом допустимом, условия (4.4) также должны выполняться, поэтому имеем: (4.7) Задача состоит в том, чтобы определить X (1) по X( 0). С этой целью сделаем несложные преобразования. Выразим вектор Ar через исходный базис: Ar=A 1 a 1 r+A 2 a 2 r+…+Amamr .(4.8) Так как известен базис, то известны (или находятся решением этой ситстемы) коэффициенты разложения air. Умножим левую и правую части равенства (4.8) на q: qAr=qA 1 a 1 r +qA 2 a 2 r +…+qAmamr. (4.9) Вычитая (4.9) из (4.6), получим: или окончательно: (4.10)
Сравнивая равенства (4.7) и (4.10), видим, что правые части равны, а левые содержат одну и ту же ситстему векторов. Поэтому коэффициенты при одноименных векторах должны совпадать. Приравнивая их, получаем искомые соотношения: (4.11) Однако решение (4.11) может быть недопустимым, если не оговорить возможные значения q. Предположим, что среди коэффициентов air есть положительные. Тогда с увеличением значения q соответствующие переменные могут стать отрицательными. Поэтому для допустимости решения X (1) необходимо, чтобы q было ограничено сверху: (4.12) С учетом (4.12) решение (4.11) всегда будет допустимым, но число ненулевых переменных в нем может превышать m, так как добавлена xr , а значит, оно может быть небазисным. Если же в качестве значения q выбрать q0, то одна из переменных станет равной нулю, а решение (4.11) - базисным. Пусть минимум в (4.12) достигается на переменной xk. Тогда базисные переменные в новом опорном решении будут вычисляться по формулам: (4.13) Этому решению соответствует новый базис {Ai}(1)={A 1 ,…,Ak- 1 ,Ar, Ak+ 1 ,…,Am}. Таким образом, переход к новому базисному решению произошел путем замены переменной Xk на Xr, соответсвенно в базисе - Ak на Ar. Рассмотрим возможные ситуации при переходе от одного решения к другому. Как было показано выше, при существовании положительных коэффициентов air достигается новое базисное решение (смежная вершина), что иллюстрируется рис. 4.6-а. Если же все air неположительны, величина q, а это значениевводимой переменной, не ограничена сверху. Следовательно, введение такой переменной не приведет к получению базисного решения (достижению новой вершины). Это признак того, что соответствующее ребро допустимого множества, а значит, и само множество оказываются неогранниченными (рис. 4.6-б).
При вычислении q0 минимум может достигаться более чем на одном индексе. При этом обнуляется более одной переменной из входящих в исходное решение. Следовательно, в новом решении будут базисные переменные с нулевым значением, что означает попадание в вырожденное базисное решение. Если исходное решение вырожденное и нулевой переменной соответствует коэффициет akr >0, то согласно (4.12) q0 =0 и значения переменных не изменяются. Однако состав базиса и базисных переменных изменится - произойдет замена на При высокой степени вырожденности теоретически возможно зацикливание, то есть возврат к старому базису, но на практике такие случаи не встречались.
|
|||||||
Последнее изменение этой страницы: 2016-08-12; просмотров: 515; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.222.117.15 (0.01 с.) |