Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Линейная множественная регрессияСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
5. Уравнение линейной множественной регрессии a. b. c. d. Ответ: b 6. Для линейного уравнения множественной регрессии установите соответствие
Ответ: a-4, b-1, c-6, d-5 7. Проблема спецификации регрессионной модели включает в себя a. Отбор факторов, включаемых в уравнение регрессии b. Оценка параметров уравнения регрессии c. Оценка надежности результатов регрессионного анализа d. Выбор вида уравнения регрессии Ответ: a,d 8. Требования к факторам, включаемым в модель линейной множественной регрессии… a. Число факторов должно быть в 6 раз меньше объема совокупности b. Факторы должны представлять временные ряды c. Факторы должны иметь одинаковую размерность d. Между факторами не должно быть высокой корреляции Ответ: а,d 9. Верные утверждения относительно мультиколлинеарности факторов a. В модель линейной множественной регрессии рекомендуется включать мультиколлинеарные факторы b. Мультиколлинеарность факторов приводит к снижению надежности оценок параметров уравнения регрессии c. Мультиколинеарность факторов проявляется в наличии парных коэффициентов межфакторной корреляции со значениями, большими 0,7 d. Мультиколинеарность факторов проявляется в наличии парных коэффициентов межфакторной корреляции со значениями, меньшими 0,3 Ответ: b,c 10. Верные утверждения о включении в уравнение линейной множественной регрессии факторов a. Включение фактора в модель приводит к заметному возрастанию коэффициента множественной детерминации b. Коэффициент парной корреляции для фактора и результативной переменной меньше 0,3 c. Значение t-критерия Стьюдента для коэффициента регрессии при факторе меньше табличного значения d. Фактор должен объяснять поведение изучаемого показателя согласно принятым положениям экономической теории Ответ: a,d 11. При построении модели множественной регрессии методом пошагового включения переменных на первом этапе рассматривается модель с … a. Одной объясняющей переменной, которая имеет с зависимой переменной наименьший коэффициент корреляции b. Одной объясняющей переменной, которая имеет с зависимой переменной наибольший коэффициент корреляции c. Несколькими объясняющими переменными, которые имеют с зависимой переменной коэффициенты корреляции по модулю больше 0,5 d. Полным перечнем объясняющих переменных Ответ: b 12. Параметры при факторах в линейной множественной регрессии a. Долю дисперсии результативной переменной, объясненную регрессией в его общей дисперсии b. Тесноту связи между результативной переменной и соответствующим фактором, при устранении влияния других факторов, включенных в модель c. Среднее изменение результативной переменной с изменением соответствующего фактора на единицу, при неизменном значении других факторов, закрепленных на среднем уровне d. На сколько процентов в среднем изменяется результативная переменная с изменением соответствующего фактора на 1% Ответ: с 13. Стандартизация переменных проводится по формуле a. b. c. d. Ответ: d 14. Уравнение множественной регрессии в стандартизованном масштабе имеет вид . На результативный признак оказывает большое влияние: a. b. и c. d. нельзя сделать вывод Ответ: а 15. Уравнение множественной регрессии в естественной форме имеет вид a. b. и c. d. нельзя сделать вывод Ответ: d 16. К свойствам уравнения регрессии в стандартизированном виде относятся … a. Коэффициенты регрессии при объясняющих переменных равны между собой b. Постоянный параметр (свободный член уравнения) регрессии отсутствует c. Стандартизированные коэффициенты регрессии несравнимы между собой d. Входящие в состав уравнения переменные являются безразмерными Ответ: b,d 17. Тесноту совместного влияния факторов на результат в уравнении линейной множественной регрессии оценивает a. Коэффициент парной корреляции b. Коэффициент частной корреляции c. Коэффициент множественной корреляции d. Коэффициент множественной детерминации Ответ: с 18. Установите соответствие
Ответ: a-1, b-4, c-3 19. Коэффициент множественной корреляции для линейной зависимости можно рассчитать по формуле a. b. c. d. Ответ: a,d 20. Верные утверждения относительно коэффициента множественной корреляции a. Чем ближе значение к единице , тем теснее связь результативного признака со всеми факторами b. Чем ближе значение к нулю , тем теснее связь результативного признака со всеми факторами c. принимает значения из промежутка [0, 1] d. принимает значения из промежутка [– 1, 1] Ответ: a,c 21. Коэффициент множественной детерминации характеризует a. Тесноту совместного влияния факторов на результат в уравнении линейной множественной регрессии b. Тесноту связи между результатом и соответствующим фактором, при устранении влияния других факторов, включенных в модель c. Долю дисперсии результативного признака, объясненную регрессией в его общей дисперсии d. Среднее изменение результативной переменной с изменением соответствующего фактора на единицу, при неизменном значении других факторов, закрепленных на среднем уровне Ответ: с 22. Для общей (TSS), регрессионной (RSS) и остаточной (ESS) суммы квадратов отклонений и коэффициента детерминации выполняется равенство … a. b. c. d. e. Ответ: a,b 23. Отношение остаточной дисперсии к общей дисперсии равно 0,05. Это означает … a. Коэффициент детерминации b. Коэффициент детерминации c. Разность , где – коэффициент детерминации d. Разность , где – коэффициент детерминации Ответ: a,d 24. Для устранения систематической ошибки остаточной дисперсии для оценки качества модели линейной множественной регрессии используется a. Коэффициент множественной детерминации b. Коэффициент множественной корреляции c. Скорректированный коэффициент множественной детерминации d. Скорректированный коэффициент частной корреляции Ответ: с 25. Оценка статистической значимости уравнения линейной множественной регрессии в целом осуществляется с помощью a. Критерия Стьюдента b. Критерия Фишера c. Критерия Дарбина-Уотсона d. Критерия Фостера-Стюарта Ответ: b 26. Оценка статистической значимости коэффициентов линейной множественной регрессии осуществляется с помощью a. Критерия Стьюдента b. Критерия Фишера c. Критерия Дарбина-Уотсона d. Критерия Фостера-Стюарта Ответ: a 27. Если коэффициент регрессии является существенным, то для него выполняются условия a. Фактическое значение t-критерия Стьюдента меньше критического b. Фактическое значение t-критерия Стьюдента больше критического c. Доверительный интервал проходит через ноль d. Стандартная ошибка не превышает половины значения параметра Ответ: b,d 28. Если уравнение регрессии является существенным, то фактическое значение F-критерия … a. больше критического b. меньше критического c. близко к единице d. близко к нулю Ответ: а 29. Предпосылками МНК являются… a. Дисперсия случайных отклонений постоянна для всех наблюдений b. Дисперсия случайных отклонений не постоянна для всех наблюдений c. Случайные отклонения коррелируют друг с другом d. Случайные отклонения являются независимыми друг от друга Ответ: а,d 30. Укажите выводы, которые соответствуют графику зависимости остатков a. Нарушена предпосылка МНК о независимости остатков друг от друга b. Имеет место автокорреляция остатков c. Отсутствует закономерность в поведении остатков d. Отсутствует автокорреляция остатков Ответ: a,b 31. При выполнении предпосылок метода наименьших квадратов (МНК) остатки уравнения регрессии, как правило, характеризуются… a. Нулевой средней величиной b. Гетероскедстичностью c. Случайным характером d. Высокой степенью автокорреляции Ответ: a,c 32. К методам обнаружения гетероскедастичности остатков относятся a. Критерий Дарбина-Уотсона b. Тест Голдфелда-Квандта c. Графический анализ остатков d. Метод наименьших квадратов Ответ: b,c 33. Фиктивными переменными в уравнении множественной регрессии являются … a. Качественные переменные, преобразованные в количественные b. Переменные, представляющие простейшие функции от уже включенных в модель переменных c. Дополнительные количественные переменные, улучшающие решение d. Комбинации из включенных в уравнение регрессии факторов, повышающие адекватность модели Ответ: а 34. Для отражения влияния качественной сопутствующей переменной, имеющей m состояний, обычно включают в модель … фиктивную переменную a. b. c. d. Ответ: с
Нелинейная регрессия 35. Регрессии, нелинейные по объясняющим переменным, но линейные по оцениваемым параметрам a. b. c. d. e. f. Ответ: а,c 36. Регрессии, нелинейные по оцениваемым параметрам a. b. c. d. e. f. Ответ: b,e,f 37. Укажите верные утверждения по поводу модели a. Относится к типу моделей нелинейных по объясняющим переменным, но линейных по оцениваемым параметрам b. Относится к типу моделей, нелинейных по оцениваемым параметрам c. Относится к типу линейных моделей d. Нельзя привести к линейному виду e. Можно привести к линейному виду Ответ: b,e 38. Укажите верные утверждения по поводу модели a. Линеаризуется линейную модель множественной регрессии b. Линеаризуется линейную модель парной регрессии c. Относится к классу нелинейных моделей по объясняющим переменным, но линейных по оцениваемым параметрам d. Относится к классу линейных моделей Ответ: b,c 39. Модель относится к классу … эконометрических моделей нелинейной регрессии a. степенных b. обратных c. показательных d. линейных Ответ: c 40. Модель относится к классу … эконометрических моделей нелинейной регрессии a. степенных b. обратных c. показательных d. линейных Ответ: a 41. Модель относится к классу … эконометрических моделей нелинейной регрессии a. степенных b. полиномиальных c. показательных d. линейных Ответ: b 42. Было замечено, что при увеличении количества вносимых удобрений урожайность также возрастает, однако, по достижении определенного значения фактора моделируемый показатель начинает убывать. Для исследования данной зависимости можно использовать спецификацию уравнения регрессии… a. b. c. d. Ответ: а 43. Для получения оценок параметров степенной регрессионной модели … a. Метод наименьших квадратов неприменим b. Требуется подобрать соответствующую подстановку c. Необходимо выполнить логарифмическое преобразование d. Необходимо выполнить тригонометрическое преобразование Ответ: с 44. С помощью метода наименьших квадратов нельзя оценить значения параметров уравнения регрессии … a. b. c. d. Ответ: b
Анализ временных рядов 45. Под изменением, определяющим общее направление развития, основную тенденцию временного ряда, понимается … a. Тренд b. Сезонная компонента c. Циклическая компонента d. Случайная компонента Ответ: а 46. Регулярными компонентами временного ряда являются a. Тренд b. Сезонная компонента c. Циклическая компонента d. Случайная компонента Ответ: а,b,c 47. Если период циклических колебаний уровней временного ряда не превышает одного года, то их называют … a. Годичными b. Конъюнктурными c. Сезонными d. Многолетними Ответ: с 48. Пусть – временной ряд, – трендовая компонента, – сезонная компонента, – случайная компонента. Аддитивная модель временного ряда имеет вид … a. b. c. d. Ответ: a 49. Пусть – временной ряд, – трендовая компонента, – сезонная компонента, – случайная компонента. Мультипликативная модель временного ряда имеет вид … a. b. c. d. Ответ: d 50. Построена аддитивная модель временного ряда, где – временной ряд, – трендовая компонента, – сезонная компонента, – случайная компонента. Если , то правильно найдены значения компонент ряда … a. b. c. d. Ответ: b 51. Определить наличие тренда во временном ряду можно … a. По графику временного ряда b. По объему временного ряда c. По отсутствию случайной компоненты d. С помощью статистической проверки гипотезы о существовании тренда Ответ: а,d 52. Определить наличие циклических (сезонных) колебаний во временном ряду можно … a. В результате анализа автокорреляционной функции b. По графику временного ряда c. По объему временного ряда d. С помощью критерия Фостера-Стюарта Ответ: a,b 53. Пусть – временной ряд с квартальными наблюдениями, – аддитивная сезонная компонента. Оценки сезонной компоненты для первого, второго и четвертого кварталов соответственно равны , , . Оценка сезонной компоненты для третьего квартала равна … Ответ: 6 54. В результате сглаживания временного ряда 6, 2, 7, 5, 12 простой трехчленной скользящей средней первое сглаженное значение равно … Ответ: 5 55. В результате сглаживания временного ряда 6, 2, 7, 5, 12 простой четырехчленной скользящей средней первое сглаженное значение равно … Ответ: 5 56. Для описания тенденции временного ряда используется кривая роста с насыщением … a. b. c. d. Ответ: d 57. Коэффициент автокорреляции первого порядка a. Коэффициент частной корреляции между соседними уровнями временного ряда b. Линейный коэффициент парной корреляции между произвольными уровнями временного ряда c. Линейный коэффициент парной корреляции между соседними уровнями временного ряда d. Линейный коэффициент парной корреляции между уровнем временного ряда и его номером Ответ: с 58. Автокорреляционная функция … a. Зависимость коэффициента автокорреляции от первых разностей уровней временного ряда b. Зависимость уровня временного ряда от коэффициента корреляции с его номером c. Последовательность коэффициентов автокорреляции, расположенных по возрастанию их порядка d. Последовательность коэффициентов автокорреляции, расположенных по возрастанию их значений Ответ: с 59. Если наиболее высоким оказался коэффициент автокорреляции 4 порядка, то временной ряд имеет a. линейный тренд b. случайную компоненту c. тренд в виде полинома 4 порядка d. циклические колебания с периодом 4 Ответ: d 60. Известны значения коэффициентов автокорреляции , , , . Укажите верные утверждения… a. Временной ряд содержит линейный тренд b. Временной ряд содержит тренд в виде полинома 4 порядка c. Временной ряд содержит циклические колебания с периодом 2 d. Временной ряд содержит циклические колебания с периодом 4 Ответ: a,d 61. Известны значения коэффициентов автокорреляции , , , . Можно сделать вывод… a. Временной ряд содержит линейный тренд b. Временной ряд является случайным c. Временной ряд содержит циклические колебания с периодом 2 d. Временной ряд содержит циклические колебания с периодом 4 Ответ: с 62. Модель временного ряда считается адекватной, если значения остатков … a. имеют нулевое математическое ожидание b. значение фактическое значение F-критерия меньше табличного c. подчиняются нормальному закону распределения d. подчиняются равномерному закону распределения e. положительны f. являются случайными и независимыми Ответ: a,с,f 63. Независимость остатков модели временного ряда может быть проверена с помощью a. Критерия Дарбина-Уотсона b. Критерия Пирсона c. Критерия Фишера d. Анализа автокорреляционной функции остатков Ответ: a,d 64. Случайность остатков модели временного ряда может быть проверена с помощью a. Анализа автокорреляционной функции остатков b. Критерия Пирсона c. Проверки гипотезы о наличии тренда d. Расчета асимметрии и эксцесса Ответ: a,с 65. Для экспоненциального сглаживания используется формула a. b. c. d. Ответ: b 66. Постоянная сглаживания в модели экспоненциального сглаживания принимает значения a. 0,2 или 0,3 b. от 0,7 до 0,9 c. [0;1] d. произвольные Ответ: с 67. Выбор оптимального значения постоянной сглаживания в модели экспоненциального сглаживания осуществляется a. Всегда используется значение b. Всегда используется значение c. Оптимальным считается такое значение , при котором получена наименьшая дисперсия ошибки d. Оптимальным считается такое значение , при котором получена наибольшая дисперсия ошибки Ответ: с 68. Параметр адаптации , , , . Значение , полученное в результате экспоненциального сглаживания временного ряда по формуле , равно… Ответ: 6,72 69. Временной ряд содержит тренд и для его сглаживания используется модель Хольта: , . Если , , , . Значение равно … Ответ: 1,25
|
||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-04-26; просмотров: 663; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.14.145.167 (0.009 с.) |