Адекватность трендовой модели
Похожие статьи вашей тематики
Трендовая модель считается адекватной описываемому процессу, если значения случайной остаточной компоненты εt являются случайными центрированными некоррелированными нормально распределёнными величинами. Проверка адекватности модели состоит в проверке указанных свойств ряда остатков модели.
Проверка случайности остатков модели осуществляется с помощью критериев исследования временного ряда на предмет наличия в нём трендовой компоненты:
1) критерий, основанный на сравнении средних уровней временного ряда;
2) критерий «восходящих и нисходящих» серий;
3) критерий серий, основанный на медиане выборочной совокупности.
В этом случае вместо исходных уровней временного ряда y1,y2,…,yt используются элементы остаточного ряда e1,e2,…,et.
Также проверка случайности остатков модели может осуществляться с помощью критерия поворотных точек.
При использовании критерия поворотных точек остаток модели et сравнивается с двумя соседними элементами ряда. Если он окажется меньше или больше их, то данная точка является поворотной. В конце сравнений подсчитывается количество m всех поворотных точек. Ряд остатков модели считается случайным, если выполняется условие:
где N – объём выборочной совокупности.
Проверка центрированности остатков временного ряда осуществляется с помощью t-критерия Стьюдента.
Основная гипотеза формулируется как утверждение о центрированности ряда остатков.
Критическое значение t-критерия tкрит(α/2, N-1) определяется для уровня значимости α/2 и числа степеней свободы (N-1) по таблице распределения Стьюдента.
Наблюдаемое значение t-критерия рассчитывается по формуле:
где
– среднее арифметическое значение ряда остатков:
G(e) – среднеквадратическое отклонение ряда остатков:
При проверке основной гипотезы возможны следующие ситуации.
Если наблюдаемое значение t-критерия (вычисленное по выборочным данным) больше критического значения t-критерия (определённого по таблице распределения Стьюдента), т. е. t набл ›t крит, то основная гипотеза отвергается. Следовательно, ряд остатков является не центрированным.
Если наблюдаемое значение t-критерия (вычисленное по выборочным данным) меньше или равно критического значения t-критерия (определённого по таблице распределения Стьюдента), т. е. tнабл≤tкрит, то основная гипотеза принимается. Следовательно, ряд остатков является центрированным.
Проверка независимости ряда остатков модели осуществляется с целью определения возможной систематической составляющей в составе ряда остатков. Если модель подобрана неудачно, то остатки будут подвержены автокорреляционной зависимости.
Независимость остатков проверяется с помощью критерия Дарбина-Уотсона, связанного с гипотезой о наличии в ряде остатков автокорреляции первого порядка, т. е. о корреляционной зависимости соседних остатков.
Нормальность ряда остатков проверяется с помощью показателей асимметрии и эксцесса (если объём выборочной совокупности не превышает 50 значений). При нормальном распределении показатели асимметрии и эксцесса равны нулю.
На основании выборочных данных вычисляются эмпирические коэффициенты асимметрии и эксцесса по формулам:
Если вычисленные коэффициенты близки к нулю, то можно сделать вывод, что ряд остатков подчиняется нормальному закону распределения.
В дополнение к выборочным коэффициентам асимметрии и эксцесса рассчитывают показатели среднеквадратических отклонений данных коэффициентов по формулам:
Если одновременно выполняются следующие неравенства:
1) |КА|≤1,5G(A);
2) |КЭ|≤1,5G(Э),
то гипотеза о нормальном характере распределения случайной компоненты принимается. Если хотя бы одно из указанных неравенств нарушается, то гипотеза о нормальном распределении остатков отвергается.
Помимо адекватности выбранной модели, необходимо охарактеризовать её точность. Наиболее простым критерием точности модели является относительная ошибка, рассчитываемая по формуле:
Если относительная ошибка равна менее, чем 13 %, то точность подобранной модели признаётся удовлетворительной.
|