Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву
Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Многофакторные производственные функцииСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Многофакторной производственной функцией называется функция, которая характеризует зависимость объёма производства от n -го количества факторов производства. y=f(xi), где
Многофакторные производственные функции полезны тем, что на их основе можно рассчитать целый ряд важнейших экономических показателей. К основным показателям многофакторных производственных функций относятся: 1) показатель средней производительности (эффективности, отдачи) i -го фактора при условии фиксированности всех остальных факторов:
2) показатель предельной производительности (эффективности, отдачи) i -го фактора, который характеризует приращение объёма производства на единицу приращения i -го фактора, рассчитывается как частная производная по факторной переменной xi:
3) для определения характера изменения предельной производительности с изменением объёма i -го фактора при постоянном значении всех остальных факторов, включённых в модель, рассчитывается частная производная второго порядка по факторной переменной xi:
Если показатель
больше нуля, то предельная производительность возрастает с ростом объёма i-ой факторной переменной. Если показатель
равен нулю, то можно найти такое значение объёма i-ой факторной переменной, при котором предельная производительность будет или минимальной или максимальной. 4) показатель частной эластичности i-го ресурса для многофакторной производственной функции характеризует относительное изменение результата производства на единицу относительного изменения i-ой факторной переменной:
5) потребность производства в i-том факторе выражается через функциональную зависимость вида: xi=φ(y,x1…xi-1,xi+1…xn). 6) для любой пары факторов производства i и j можно рассчитать предельную норму замещения j-ой факторной переменной i-той факторной переменной. Эта норма равна взятому со знаком минус отношению показателей предельной производительности i-ой и j-ой факторных переменных:
При выборе конкретного вида производственной функции исследователь должен руководствоваться закономерностями изменения всех рассмотренных показателей. В некоторых случаях выбранную форму производственной функции приходится отвергать, потому что соответствующая ей система показателей противоречит результатам качественного анализа или эмпирическим данным. С другой стороны предварительные заключения о характере изменений рассмотренных показателей могут стать основным доводом в пользу выбора той или иной формы производственной функции. Модели бинарного выбора Результативная переменная у в нормальной линейной модели регрессии является непрерывной величиной, способной принимать любые значения из заданного множества. Но помимо нормальных линейных моделей регрессии существуют модели регрессии, в которых переменная у должна принимать определённый узкий круг заранее заданных значений. Моделью бинарного выбора называется модель регрессии, в которой результативная переменная может принимать только узкий круг заранее заданных значений В качестве примеров бинарных результативных переменных можно привести:
Приведенные в качестве примеров бинарные переменные являются дискретными величинами. Бинарная непрерывная величина задаётся следующим образом:
Если стоит задача построения модели регрессии, включающей результативную бинарную переменную, то прогнозные значения yiпрогноз, полученные с помощью данной модели, будут выходить за пределы интервала [ 0;+1 ] и не будут поддаваться интерпретации. В этом случае задача построения модели регрессии формулируется не как предсказание конкретных значений бинарной переменной, а как предсказание непрерывной переменной, значения которой заключаются в интервале [ 0;+1 ]. Решением данной задачи будет являться кривая, удовлетворяющая следующим трём свойствам: 1) 1) F(–∞)=0; 2) F(+∞)=1; 3) F(x1)>F(x2) при условии, что x1> x2. Данным трём свойствам удовлетворяет функция распределения вероятности. Модель парной регрессии с результативной бинарной переменной с помощью функции распределения вероятности можно представить в следующем виде: prob(yi=1)=F(β0+β1xi), где prob(yi=1) – это вероятность того, что результативная переменная yi примет значение, равное единице. В этом случае прогнозные значения yiпрогноз, полученные с помощью данной модели, будут лежать в пределах интервала [ 0;+1 ]. Модель бинарного выбора может быть представлена с помощью скрытой или латентной переменной следующим образом:
Векторная форма модели бинарного выбора с латентной переменной:
В данном случае результативная бинарная переменная yi принимает значения в зависимости от латентной переменной yi*:
Модель бинарного выбора называется пробит-моделью или пробит-регрессией (probit regression), если она удовлетворяет двум условиям: 1) остатки модели бинарного выбора εi являются случайными нормально распределёнными величинами; 2) функция распределения вероятностей является нормальной вероятностной функцией. Пробит-регрессия может быть представлена с помощью выражения: NP(yi)=NP(β0+β1x1i+…+βkxki), где NP – это нормальная вероятность (normal probability). Модель бинарного выбора называется логит-моделью или логит-регрессией (logit regression), если случайные остатки εi подчиняются логистическому закону распределения. Логит-регрессия может быть представлена с помощью выражения:
Данная модель логит-регрессии характеризуется тем, что при любых значениях факторных переменных и коэффициентов регрессии, значения результативной переменной yi будут всегда лежать в интервале [0;+1]. Обобщённый вид модели логит-регрессии:
Достоинством данной модели является то, что результативная переменная yi может произвольно меняться внутри заданного числового интервала (не только от нуля до плюс единицы). Логит-регрессия относится к классу функций, которые можно привести к линейному виду. Это осуществляется с помощью преобразования, носящего название логистического или логит преобразования, которое можно проиллюстрировать на примере преобразования обычной вероятности р:
Качество построенной логит-регрессии или пробит-регрессии характеризуется с помощью псевдо коэффициента детерминации, который рассчитывается по формуле:
Если значение данного коэффициента близко к единице, то модель регрессии считается адекватной реальным данным.
|
||||
|
Последнее изменение этой страницы: 2016-04-26; просмотров: 577; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 216.73.216.169 (0.011 с.) |