Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Условия идентификации структурной формы системы одновременных уравненийСодержание книги
Поиск на нашем сайте
Введём следующие обозначения: N – количество предопределённых переменных структурной формы системы одновременных уравнений; n – количество предопределённых переменных в уравнении, проверяемом на идентифицируемость; M – количество эндогенных переменных структурной формы системы одновременных уравнений; m – количество эндогенных переменных в уравнении, проверяемом на идентифицируемость; K – матрица коэффициентов при переменных, не входящих в уравнение, проверяемое на идентифицируемость. Необходимые и достаточные условия идентификации применяются только к структурной форме системы одновременных уравнений. Первое необходимое условие идентифицируемости уравнения структурной формы системы одновременных уравнений. Уравнение структурной формы системы одновременных уравнений идентифицируемо в том случае, если оно исключает хотя бы N-1 предопределённую переменную: (N–n)+(M–m)≥N–1. Второе необходимое условие идентифицируемости уравнения структурной формы системы одновременных уравнений. Уравнение структурной формы системы одновременных уравнений идентифицируемо в том случае, если количество предопределённых переменных, не входящих в данное уравнение, будет не меньше числа эндогенных переменных этого уравнения минус единица: N–n≥m–1. Достаточное условие идентифицируемости уравнения структурной формы системы одновременных уравнений. Уравнение структурной формы системы одновременных уравнений идентифицируемо в том случае, если ранг матрицы K равен (N-1). Рангом матрицы называется размер наибольшей её квадратной подматрицы, определитель которой не равен нулю. На основе перечисленных условий идентификации, можно сформулировать необходимые и достаточные условия идентифицируемости уравнения структурной формы системы одновременных уравнений: 1) уравнение структурной формы системы одновременных уравнений считается сверхидентифицированным, если M–m>n–1 и ранг матрицы K равен (N-1); 2) уравнение структурной формы системы одновременных уравнений считается точно идентифицированным, если M–m=n–1 и ранг матрицы K равен (N-1); 3) уравнение структурной формы системы одновременных уравнений считается неидентифицированным, если M–m≥n–1 и ранг матрицы K меньше (N-1); 4) уравнение структурной формы системы одновременных уравнений считается неидентифицированным, если M–m<n–1. В качестве примера можно рассмотрим процесс идентификации структурной формы модели спроса и предложения. Данная модель включает в себя три уравнения: 1) уравнение предложения: 2) уравнение спроса: 3) тождество равновесия: QSt = Qdt С учётом тождества равновесия, модель спроса-предложения может быть записана в виде: Количество эндогенных переменных данной модели M равно двум (Pt и Qt), т.е. M=2. Количество предопределённых переменных данной модели N равно двум (Pt – 1 и It), т.е. N=2. Проверим выполнение первого необходимого условия идентифицируемости. Для функции спроса выполняются равенства m=2 и n=1. Отсюда (N–n)+(M–m)=(2–1)+(2–2)+(2–2)=1=(N–1)=1, следовательно, уравнение спроса является точно идентифицированным. Для функции предложения выполняются равенства m=2 и n=1. Отсюда (N–n)+(M–m)=(2–1)+(2–2)+(2–2)=1=(N–1)=1, следовательно, уравнение предложения является точно идентифицированным. Проверим выполнение второго необходимого условия идентифицируемости. Для функции спроса выполняются равенства m=2 и n=1. Отсюда N–n=2–1=1=m–1=2–1=1, следовательно, уравнение спроса является точно идентифицированным. Для функции предложения выполняются равенства m=2 и n=1. Отсюда N–n=2–1=1=m–1=2–1=1, следовательно, уравнение предложения является точно идентифицированным. Проверим выполнение достаточного условия идентифицируемости, заключающееся в том, чтобы хотя бы один из коэффициентов матрицы K не был равен нулю, т.к. M–1=1. В первом уравнении модели исключена переменная It и матрица K=[b2]. Т.к. определитель данной матрицы не равен нулю, следовательно, rank=1=M–1 и уравнение является идентифицированным. Во втором уравнении исключена переменная Pt–1 и матрица К=[a2]. Т.к. определитель данной матрицы не равен нулю, следовательно, rank=1=M–1 и уравнение является идентифицированным. Т.к. уравнения спроса и предложения являются точно идентифицированными, то и система уравнений в целом точно идентифицирована. Приведённая форма системы уравнений модели спроса-предложения:
|
||||
Последнее изменение этой страницы: 2016-04-26; просмотров: 313; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.218.234 (0.006 с.) |