Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Постоянная непрерывная рентаСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Во всех рассмотренных выше рентахпредполагалось, что члены потока платежейпоступают дискретно — через фиксированные интервалы времени (периоды ренты). Вместе с тем иногда более адекватное описание потока платежей достигается, когда он воспринимается как непрерывный процесс. Например, когда отдача от инвестиций происходит так часто, что в целом этот поток можно рассматривать как непрерывный. Предположение о непрерывности в определенных условиях увеличивает возможности количественного анализа, особенно при сложных производственных долгосрочных инвестиций. Обсудим методы расчета наращенной суммы и современной стоимости, а также ряд параметров, характеризующих постоянную непрерывную ренту при условии, что применяется годовая дискретная процентная ставка. По определению у непрерывной ренты . Найдем коэффициент приведения такой ренты, обозначим его как . Для этого необходимо найти предел коэффициента приведения p -срочной ренты при . Непосредственная подстановка в знаменатель приводит к неопределенности: Раскроем неопределенность, применив правило Лопиталя, получим Таким образом, (4.46) Аналогичным путем получим коэффициент наращения непрерывной ренты: (4.47) Очевидно, что переход от дискретных взносов постнумерандо к непрерывным увеличивает соответствующие коэффициенты в i/ ln (1 + i) раз. Пример 4.22. Ожидается, что доходы от эксплуатации месторождения полезных ископаемых составят 1 млрд. руб. в год, продолжительность разработки — 10 лет, отгрузка и реализация продукции непрерывны и равномерны. Капитализированная стоимость дохода при дисконтировании по ставке 10% составит: Заметим, что формулы (4.46) и (4.47) предполагают непрерывное поступление платежей и дискретное начисление процентов. Вероятно, более "естественным" является положение, когда оба процесса непрерывны. Для получения формул соответствующих коэффициентов воспользуемся формулами эквивалентности между непрерывными и дискретными ставками: , где — сила роста. Перепишем формулы (4.46) и (4.47), использовав эти соотношения. Получим: (4.48) (4.49) Формулы (4.46) — (4.49) дают одинаковые результаты только в том случае, когда непрерывные и дискретные ставки являются эквивалентными (см. параграф 3.3). Пример 4.23. Пусть в примере 4.22 дисконтирование осуществляется по силе роста 10%, тогда согласно формуле (4.48) Эквивалентная дискретной ставке 10% (которая была применена в примере 4.22) сила роста составит = ln 1,1 = 0,09531, или 9,531%. Откуда Формулы (4.48) и (4.49) можно получить и с помощью интегрирования. Например, коэффициент приведения находим следующим образом: Остановимся теперь на одном частном, но практически важном вопросе. Определим величину коэффициента наращения непрерывной ренты для годового интервала времени. Обозначим коэффициент наращения p -срочной ренты для этого интервала как . Его предел при составит: Разложим эту функцию в степенной ряд, ограничившись первыми тремя членами: Близкий к этому результат дают и первые три члена разложения бинома (1 + i)l/2. В итоге Иначе говоря, равномерная и непрерывная выплата годовой суммы P примерно равнозначна разовой выплате этой суммы в середине года. Аналогично находим коэффициент приведения непрерывной ренты за год Определение срока и размера ставки для постоянных непрерывных рент. Начнем с определения срока для случая, когда исходной является современная стоимость данного потока платежей. Решим (4.48) относительно п,принимая во внимание, что : (4.50) Аналогично для случая, когда исходной является наращенная сумма ренты, получим: (4.51) Пример 4.24. За какой срок наращенная сумма ренты вырастет в пять раз по сравнению с годовой суммой взносов, если последние осуществляются непрерывно и равномерно в пределах года? На взносы начисляются проценты, сила роста 8%. Здесь S/R = 5, = 0,08, откуда согласно формуле (4.51) Что касается определения силы роста по всем остальным заданным параметрам ренты, то здесь возникают те же затруднения, с которыми мы встретились при решении аналогичной задачи для дискретной ренты. Наиболее простым выходом является интерполяция и метод Ньютона — Рафсона (см. параграф 4.4). Остановимся на последнем. Исходная функция: (4.52) Разделим это выражение на R и умножим на : (4.53) после чего находим производную: . (4.54) На основе формулы (4.41) получим искомое выражение: . (4.55) Пример 4.25. Какова доходность инвестиций, измеренная в виде силы роста, если затрачено 1000 млн. руб.? Годовая отдача ожидается в размере 200 млн. руб., поступающих равномерно в пределах года, срок отдачи — восемь лет. Воспользуемся интерполяционной формулой (4.40). Необходимо найти такое значение силы роста, которое удовлетворяло бы требованию A/R = 5 для n = 8. Зададимся двумя значениями ставки: 0,14 и 0,12. Им соответствуют Находим первое приближение: Проверка: при полученном значении силы роста = = A/R = 4,95 такая степень точности явно недостаточна, поэтому продолжим расчет, сокращая диапазон заданных значений силы роста. Пусть ставки, между которыми производится интерполяция, равны 0,125 и 0,13, тогда: проверка A/R = 5,02. Как видим, уточнение ответа можно продолжить. Применим теперь формулу (4.55). Пусть начальное значение = 0,12, тогда Проверка: = 4,992.
|
||||
Последнее изменение этой страницы: 2016-04-23; просмотров: 576; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.226.200.180 (0.007 с.) |