Эквивалентность процентных ставок
Понятие эквивалентности использовалось выше применительно к платежам. Теперь распространим его на процентные ставки. Как было показано ранее, для процедур наращения и дисконтирования могут применяться различные виды процентных ставок. Определим теперь те их значения, которые в конкретных условиях приводят к одинаковым финансовым результатам. Иначе говоря, замена одного вида ставки на другой при соблюдении принципа эквивалентности не изменяет отношения сторон в рамках одной операции. Для участвующих в сделке сторон в общем безразлично, какой вид ставки фигурирует в контракте. Такие ставки назовем эквивалентными.
Проблема эквивалентности ставок уже затрагивалась в гл. 2 при определении эффективной ставки процента. Там было показано, что годовая эффективная ставка i эквивалентна номинальной ставке j при начислении процентов т раз в году. Рассмотрим теперь проблему эквивалентности ставок более полно и систематизировано. Сперва соотношения эквивалентности простых ставок, затем простых и сложных, далее эквивалентность различного вида сложных ставок, наконец, некоторые соотношения эквивалентности дискретных и непрерывных ставок.
Формулы эквивалентности ставок во всех случаях получим исходя из равенства взятых попарно множителей наращения. Приведем лишь один пример. Определим соотношение эквивалентности между простой и сложной ставками наращения. Для этого приравняем друг к другу соответствующие множители наращения:
(1 + nis) = (1 + i) n,
где is и i — ставки простых и сложных процентов.
Приведенное равенство предполагает, что начальные и наращенные суммы при применении двух видов ставок идентичны (рис. 3.4). Решение дает следующие отношения эквивалентности ставок:
(3.9) (3.10)

Аналогичным образом определим и другие, приведенные ниже соотношения эквивалентности ставок.
Эквивалентность простых процентных ставок. При выводе искомых соотношений между ставкой наращения и учетной ставкой следует иметь в виду, что при их применении используются временные базы K = 360 или K = 365 дней. Если временные базы одинаковы, то из равенства соответствующих множителей наращения следует:
(3.11) (3.12)
где: п — срок в годах;
is — ставка наращения;
d — учетная ставка.
Пример 3.12. Вексель учтен за год до даты его погашения по учетной ставке 15%. Какова доходность учетной операции в виде процентой ставки? По формуле (3.11) находим:
is = = 0,17647, или 17,647%.
Иначе говоря, операция учета по учетной ставке 15% за год дает тот же доход, что и наращение по ставке 17,647%.
Из приведенных формул и примера следует, что для одинаковых условий операции справедливо неравенство d < is. Следует обратить внимание и на то, что отношения эквивалентности между просты-
ми ставками существенно зависят от срока операции. С увеличением срока различия в размерах ставок становятся все более заметными. Например, для d = 10% находим
n (в годах)
| 0,1
| 0,5
|
|
|
|
| is (в %)
| 10,1
| 10,5
| 11,1
| 12,5
|
| ∞
| Пусть срок ссуды измеряется в днях, тогда, подставив в формулы (3.11) и (3.12) n = t/K, находим следующие соотношения эквивалентности:
а) временные базы одинаковы и равны 360 дням:
(3.13) (3.14)
б) если при начислении процентов принята база K = 365, а для учетной ставки K = 360, то
(3.15) (3.16)
Пример 3.13. Необходимо найти величину учетной ставки, эквивалентной годовой процентной ставке 80% (K = 365) при условии, что срок учета равен 255 дням. Находим по формуле (3.16)
d = = 0,50615, или 50,615%.
Эквивалентность простых и сложных ставок. Рассмотрим соотношения эквивалентности простых ставок is и d,с одной стороны, и сложных ставок i и j — с другой. Сложную учетную ставку здесь не будем принимать во внимание. Попарно приравняв соответствующие множители наращения, получим набор искомых соотношений.
Эквивалентность is и i (см. формулы (3.9) и (3.10)).
Эквивалентность is и j:
(3.17) (3.18)
Эквивалентность d и i:
(3.19) (3.20)
Эквивалентность d и j:
(3.21) (3.22)
Пример 3.14. Какой сложной годовой ставкой можно заменить в контракте простую ставку 18% (K = 365), не изменяя финансовых последствий для участвующих сторон? Срок операции 580 дней.
По формуле (3.10) находим эквивалентную сложную ставку:
= 0,17153, или17,153%
Эквивалентность сложных ставок. Рассмотрим наиболее важные соотношения эквивалентности для ставок i, j и dc (напомним, dc — сложная учетная ставка):
i = (1 + j/m)m - 1; (3.23) (3.24)
(3.25) (3.26)
где dc — сложная учетная ставка.
Приведем еще несколько полезных соотношений, которые нетрудно получить на основе формул (3.25) и (3.26). Напомним, что v = (1 + i)-1:
dc = iv, v = 1 - dc, i - dc = idc. (3.27) (3.28) (3.29)
Заметим, что в зависимостях (3.23) — (3.29) срок не играет никакой роли.
Пример 3.15. При разработке условий контракта стороны договорились о том, что доходность кредита должна составлять 24% годовых. Каков должен быть размер номинальной ставки при начислении процентов ежемесячно, поквартально?

Эквивалентность сложных дискретных и непрерывных ставок. Теоретически можно найти соотношение эквивалентности между силой роста и любой дискретной процентной ставкой. Однако в этом, вероятно, нет необходимости. Ограничимся несколькими такими соотношениями, необходимость в которых может возникнуть в практических расчетах.
Эквивалентность и i. Из равенства следует:
(3.30) (3.31)
Эквивалентность и j:
(3.32) (3.33)
Эквивалентность и dc. Из равенства следует:
(3.34) (3.35)
Приведем еще одно полезное соотношение: 
Пример 3.16. Какая непрерывная ставка заменит поквартальное начисление процентов по номинальной ставке 20%? Согласно формуле (3.33) находим
= 4 х ln(1 + 0,2) = 0,19516, или 19,516%.
Формулы эквивалентности дискретных и непрерывных ставок позволяют расширить область применения непрерывных процентов. Как уже говорилось выше, непрерывные проценты во многих сложных расчетах дают возможность существенно упростить выкладки. Вместе с тем такие ставки непривычны для практика, поэтому после использования в расчетах формул непрерывных процентов нетрудно с помощью формул эквивалентности представить полученные результаты в виде общепринятых дискретных характеристик.
Средние процентные ставки
Проблема эквивалентности ставок в некоторых случаях может быть решена и с помощью расчета средних значений ставок. Если речь идет об одной финансовой операции, в которой размер ставки изменяется во времени, то все значения ставки можно обобщить с помощью соответствующей средней. Причем замена всех усредняемых значений ставки на среднюю ставку не должна изменить результаты наращения или дисконтирования.
Искомые средние получим при приравнивании множителей наращения друг к другу. Начнем с простой ставки. Пусть за периоды n 1, n 2,..., nk начисляются простые проценты по ставкам i 1, i 2,..., ik, тогда на основе равенства множителей наращения:
;
где N = — общий срок наращения;
— средняя ставка;
получим искомую среднюю:

Найденная характеристика представляет собой арифметическую среднюю взвешенную с весами, равными продолжительности отдельных периодов.
Аналогичным способом получим среднюю учетную ставку:

Пример 3.17. Контракт предусматривает переменную по периодам ставку простых процентов: 20; 22 и 25%. Продолжительность периодов: два, три и пять месяцев. Какой размер ставки приведет к аналогичному наращению исходной суммы? Находим среднюю:

Если усредняются переменные во времени ставки сложных процентов, то из равенства множителей наращения

следует:
(3.36)
Средняя в этом случае, как видим, вычисляется как взвешенная средняя геометрическая.
Пример 3.18. Допустим, для первых двух лет ссуды применяется ставка, равная 15%, для следующих трех лет она составляет 20%. Средняя ставка за весь срок ссуды равна
или 17,974%.
Рассмотрим теперь усреднение ставок, применяемых в нескольких однородных операциях, которые различаются суммой долга Pt и ставкой процента it. Искомые средние ставки находим из условия равенства соответствующих сумм после наращения процентов. Так, если применяются простые ставки и сроки этих операций одинаковы, то можно записать следующее исходное равенство:

(3.37)
Как видим, искомая ставка равна взвешенной арифметической средней; в качестве весов берутся размеры ссуд.
Усреднение сложных ставок для тех же условий достигается с помощью взвешенной степенной средней:
(3.38)
Пример 3.19. Выданы две ссуды: Р 1 = 1 млн. руб., P 2 = 2 млн. руб. Первая выдана под 20% годовых, вторая — под 30%, сроки ссуд одинаковы и равны полутора годам. Если ставки простые, то:
= 0,2667.
Для сложных ставок находим:
= 0,2671.
Формулы (3.37) и (3.38) получены для частного случая, когда сроки ссуд одинаковы. В более общих случаях они, разумеется, не работают. Решение соответствующих задач возможно на основе методов, разработанных для так называемых потоков платежей. Эти методы обсуждаются в следующем разделе книги.
Раздел 2Потоки платежей
|