Интегрирование сложных тригонометрических функций 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Интегрирование сложных тригонометрических функций



 

На уроке Интегралы от тригонометрических функций мы разобрали интеграл от тангенса в квадрате. В том примере для нахождения интеграла мы применяли тригонометрическую формулу

.

Интеграл от тангенса в четвертой, пятой степени (редко в более высоких степенях) решается с помощью этой же формулы!

 

Пример 15

Найти неопределенный интеграл

.

Идея решения подобных интегралов состоит в том, чтобы с помощью формулы «развалить» исходный интеграл на несколько более простых интегралов:

(1) Готовим подынтегральную функцию к применению формулы.

(2) Для одного из множителей используем формулу

(3) Раскрываем скобки и сразу же используем свойство линейности неопределенного интеграла.

(4) В первом интеграле используем метод подведения функции под знак дифференциала, во втором интеграле еще раз используем формулу

, в данном случае .

(5) Берём все три интеграла и получаем ответ.

 

Пример 16

Найти неопределенный интеграл

Это пример для самостоятельного решения.

 

 

Для котангенса существует аналогичная формула:

. Полное решение и ответ в конце урока.

 

Если возникли затруднения или недопонимание, следует вернуться к уроку Интегралы от тригонометрических функций. На вышеупомянутом уроке мы рассматривали универсальную тригонометрическую подстановку для решения определенного вида интегралов от тригонометрических функций. Недостаток универсальной тригонометрической подстановки заключается в том, что при её применении часто возникают громоздкие интегралы с трудными вычислениями. И в ряде случаев универсальной тригонометрической подстановки можно избежать! Рассмотрим еще один канонический пример - интеграл от единицы, деленной на синус:

 

Пример 17

Найти неопределенный интеграл

.

Здесь можно использовать универсальную тригонометрическую подстановку и получить ответ, но существует более рациональный путь. Приведём это решение с комментариями к каждому шагу:

(1) Используем тригонометрическую формулу синуса двойного угла

.

(2) Проводим искусственное преобразование: В знаменателе делим и умножаем на

.

(3) По известной формуле в знаменателе превращаем дробь в тангенс.

(4) Подводим функцию под знак дифференциала.

(5) Берём интеграл.

 

Пример 18

Найти неопределенный интеграл

.

Указание: Самым первым действием следует использовать формулу прив е дения

и аккуратно провести аналогичные предыдущему примеру действия.

 

Пример 19

Найти неопределенный интеграл

.

Ну, это совсем простой пример. Полные решения и ответы в конце урока.

 

Думаем, теперь ни у кого не возникнет проблем с интегралами:

и т.п.

В чём состоит идея метода? Идея состоит в том, чтобы с помощью тождественных преобразований и тригонометрических формул организовать в подынтегральной функции только тангенсы и производную тангенса

.

То есть, речь идет о замене:

.

В Примерах 17-19 мы фактически и применяли данную замену, но интегралы были настолько просты, что дело обошлось эквивалентным действием – подведением функции под знак дифференциала.

Примечание: аналогичные рассуждения можно провести и для котангенса.

Существует и формальное правило для применения вышеуказанной замены:

 



Поделиться:


Последнее изменение этой страницы: 2017-01-19; просмотров: 397; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.219.112.111 (0.007 с.)