Если сумма степеней косинуса и синуса – целое отрицательное число, тоинтеграл можно свести к тангенсам и его производной. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Если сумма степеней косинуса и синуса – целое отрицательное число, тоинтеграл можно свести к тангенсам и его производной.



 

Для интеграла – целое отрицательное число.

Для интеграла – целое отрицательное число.

Для интеграла – целое отрицательное число.

Рассмотрим пару более содержательных примеров на это правило:

 

Пример 20

Найти неопределенный интеграл

.

Сумма степеней синуса и косинуса : 2 – 6 = –4 – целое отрицательное число, значит, интеграл можно свести к тангенсам и его производной:

(1) Преобразуем знаменатель.

(2) По известной формуле получаем .

(3) Преобразуем знаменатель.

(4) Используем формулу

.

(5) Подводим функцию под знак дифференциала.

(6) Проводим замену . Более опытные студенты замену могут и не проводить, но все-таки лучше заменить тангенс одной буквой – меньше риск запутаться.

Далее берётся простой интеграл и проводится обратная замена.

 

Пример 21

Найти неопределенный интеграл

.

Это пример для самостоятельного решения.

 

Пример 22

Найти неопределенный интеграл

.

В этом интеграле изначально присутствует тангенс, что сразу наталкивает на уже знакомую мысль:

.

 

Пара творческих примеров для самостоятельного решения:

 

Пример 23

Найти неопределенный интеграл

.

 

Пример 24

Найти неопределенный интеграл

.

 

Да, в них, конечно, можно понизить степени синуса, косинуса, использовать универсальную тригонометрическую подстановку, но решение будет гораздо эффективнее и короче, если его провести через тангенсы. Полное решение и ответы в конце урока.

Переходим к заключительному пункту путешествия в мир сложных интегралов:

 

 

Интеграл от корня из дроби

 

Интеграл, который мы рассмотрим, встречается достаточно редко, но я буду очень рад, если единственный пример данного параграфа вам поможет.

Корнями всё начиналось, корнями и закончится. Рассмотрим неопределенный интеграл:

, где a, b, c, d – числа.

Считаем, что все эти числа и коэффициенты не равны нулю.

В подынтегральной функции у нас находится корень, а под корнем – дробь, в числителе и знаменателе которой располагаются линейные функции.

Метод стар – необходимо избавиться от корня. Стар и уныл, но сейчас станет веселее, поскольку придется проводить непростую замену.

Замена, с помощью которой мы гарантированно избавимся от корня, такова:

.

Теперь нужно выразить «икс» и найти, чему равен дифференциал dx.

Выражаем «икс»:

Теперь найдем дифференциал:

Зачем были эти нелепые скучные телодвижения?

Мы вывели готовые формулы, которыми можно пользовать при решении интеграла вида

 

!

Формулы замены таковы:

.

 

Заключительный пример:

Пример 25

Найти неопределенный интеграл

.

Проведем замену:

.

В данном примере: a =-1, b = 2, c = 3, d = 1. Тогда для dx имеем:

.

Таким образом:

.

Такой интеграл, кстати, уже фигурировал в Примере 13. Интегрируем по частям:

Проведем обратную замену. Если изначально

,

то обратно:

.

Преобразуем далее:

 

.

 

Некоторым страшно, а я это продифференцировал, ответ верный!

Иногда встречаются интегралы вида

, ,

но это нужно быть либо слишком умным, либо попасть под раздачу.

Идея та же – избавиться от корня, причем во втором случае, как все догадались, следует проводить подстановку

.

и самостоятельно выводить, чему будет равняться дифференциал dx.

Теперь вам практически любой интеграл по силам, успехов!

 

 

Решения и ответы:

Пример 2: Решение:

.

Проведем замену:

Интегрируем по частям:

 

 

Пример 3: Ответ:

.

 

Пример 4: Ответ:

.

 

Пример 6: Решение:

.

Интегрируем по частям:

Таким образом:

В результате:

 

Пример 8: Решение:

Дважды интегрируем по частям и сводим интеграл к самому себе:

Таким образом:

 

 

Пример 10: Решение:

.

Проведем замену:

 

 

Пример 11: Решение:

Замена:

.

 

 

Пример 12: Решение:

Замена:

.

 

 

Пример 14: Решение:

Дважды используем рекуррентную формулу

 

 

Пример 16: Решение:

 

 

Пример 18: Решение:

.

Используем формулу приведения:

и формулу двойного угла:

.

Далее имеем

 

 

Пример 19: Решение:

 

 

Пример 21: Решение: –3 – 3 = –6 – целое отрицательное число, значит преобразуем

 

 

Пример 23: Решение:

Пример 24: Решение:

.

 

 

Определенный интеграл. Примеры решений

 

Для того, чтобы научиться решать определенные интегралы необходимо:

1) Уметь находить соответствующие неопределенные интегралы.

2) Уметь вычислить определенный интеграл.

Как видите, для того, чтобы освоить определенный интеграл, нужно достаточно хорошо ориентироваться в «обыкновенных» неопределенных интегралах. Поэтому, если вы только-только начинаете погружаться в интегральное исчисление, и чайник еще не совсем закипел, то лучше начать с урока Неопределенный интеграл. Примеры решений.

В общем виде определенный интеграл записывается так:

Что прибавилось по сравнению с неопределенным интегралом?

Прибавились пределы интегрирования.

Нижний предел интегрирования стандартно обозначается буквой a.

Верхний предел интегрирования стандартно обозначается буквой b.

Отрезок [ a; b ] включает граничные точки и называется отрезком интегрирования.

Что такое определенный интеграл? Можно посмотреть в учебниках про диаметр разбиения отрезка, предел интегральных сумм и т. д., но урок носит практический характер. Поэтому скажем, что определенный интеграл – это, прежде всего, самое что ни на есть обычное ЧИСЛО.

Есть ли у определенного интеграла геометрический смысл? Есть. И очень хороший. Самая популярная задача вычисления определённого интеграла – вычисление площади с помощью определенного интеграла.

Что значит решить определенный интеграл? Решить определенный интеграл – это значит, найти число, равное приращению первообразной функции на отрезке [ a; b ].

Как решить определенный интеграл? С помощью знакомой со школы формулы Ньютона-Лейбница:

.

Формулу лучше переписать на отдельный листочек, она должна быть перед глазами на протяжении всего урока.

Этапы решения определенного интеграла следующие:

1) Сначала находим первообразную функцию F (X) (неопределенный интеграл). Обратите внимание, что константа C в определенном интеграле никогда не добавляется.

Обозначение является чисто техническим, и вертикальная палочка не несет никакого математического смысла, по сути – это просто отчёркивание. Зачем нужна сама запись

?

Это подготовка для применения формулы Ньютона-Лейбница.

2) Подставляем значение верхнего предела в первообразную функцию: F (b).

3) Подставляем значение нижнего предела в первообразную функцию: F (a).

4) Рассчитываем (без ошибок!) разность F (b)- F (a), то есть, находим число, равное приращению первообразной (от подынтегральной) функции на отрезке [ a; b ].

Готово.

 

Всегда ли существует определенный интеграл? Нет, не всегда существует всё, что мы напишем в виде определённого интеграла. Например, интеграла

не существует, поскольку отрезок интегрирования не входит в область определения подынтегральной функции и значения под квадратным корнем не могут быть отрицательными. А вот менее очевидный пример:

.

Такого интеграла тоже не существует на всём отрезке [-2; 3], так как в точках

,

этого отрезка подынтегральная функция f (x) = tg (x) не существует.

Для того, чтобы определенный интеграл существовал на данном отрезке, необходимо, чтобы подынтегральная функция была непрерывной на отрезке интегрирования.

Из вышесказанного следует первая важная рекомендация: перед тем, как приступить к решению ЛЮБОГО определенного интеграла, нужно убедиться в том, что подынтегральная функция непрерывна на отрезке интегрирования. Бывает так, что подолгу мучаешься с нахождением трудной первообразной, а когда наконец-то ее находишь, то ещё и ломаешь голову над вопросом: «что за ерунда получилась?». Например, если получилось примерно так:

???!!!

то нельзя подставлять отрицательные числа под корень! Если для решения в контрольной работе, на зачете или экзамене Вам предложен несуществующий интеграл вроде

,

то нужно дать ответ, что интеграла не существует и обосновать – почему.

Может ли определенный интеграл быть равен отрицательному числу? Может. И отрицательному числу. И нулю. Может даже получиться бесконечность, но это уже будет несобственный интеграл, коим отведена отдельная лекция.

Может ли нижний предел интегрирования быть больше верхнего предела интегрирования? Может, и такая ситуация реально встречается на практике. Интеграл

преспокойно вычисляется по формуле Ньютона-Лейбница.

Без чего не обходится высшая математика? Конечно же, без всевозможных свойств. Поэтому рассмотрим некоторые свойства определенного интеграла.

 

В определенном интеграле можно переставить верхний и нижний предел, сменив при этом знак:

Например, в определенном интеграле перед интегрированием

целесообразно поменять пределы интегрирования на «привычный» порядок:

.

В таком виде интегрировать значительно удобнее.

Как и для неопределенного интеграла, для определенного интеграла справедливы свойства линейности:

Это справедливо не только для двух, но и для любого количества функций.

В определенном интеграле можно проводить замену переменной интегрирования, правда, по сравнению с неопределенным интегралом тут есть своя специфика, о которой мы еще поговорим.

Для определенного интеграла справедлива формула интегрирования по частям: .

 

Пример 1

Вычислить определенный интеграл

.

Решение:

(1) Выносим константу за знак интеграла.

(2) Интегрируем по таблице с помощью самой популярной формулы

.

(3) Используем формулу Ньютона-Лейбница

.

Сначала подставляем в x 3 верхний предел, затем – нижний предел. Проводим дальнейшие вычисления и получаем окончательный ответ.

 

Пример 2

Вычислить определенный интеграл

.

Это пример для самостоятельно решения, решение и ответ в конце урока.

 

Пример 3

Вычислить определенный интеграл

.

Решение:

.

(1) Используем свойства линейности определенного интеграла.

(2) Интегрируем по таблице, при этом все константы выносим – они не будут участвовать в подстановке верхнего и нижнего предела.

(3) Для каждого из трёх слагаемых применяем формулу Ньютона-Лейбница.

СЛАБОЕ ЗВЕНО в определенном интеграле – это ошибки вычислений и часто встречающаяся ПУТАНИЦА В ЗНАКАХ. Будьте внимательны! Особое внимание заостряем на третьем слагаемом:

,

т. к. очень часто машинально пишут

.

Следует заметить, что рассмотренный способ решения определенного интеграла – не единственный. При определенном опыте, решение можно значительно сократить. Например, так:

.

Здесь устно использованы правила линейности, устно проинтегрированы табличные интегралы. Получилась всего одна скобка с отчёркиванием пределов:

(в отличие от трёх скобок в первом способе). И в «целиковую» первообразную функцию мы сначала подставили 4, затем –2, опять же выполнив все действия в уме.

При втором способе существует повышенный риск допустить ошибку в вычислениях, поэтому студенту-чайнику лучше использовать первый способ, чтобы не терять знаки.

Несомненными преимуществами второго способа является быстрота решения, компактность записи и тот факт, что первообразная.

находится в одной скобке.



Поделиться:


Последнее изменение этой страницы: 2017-01-19; просмотров: 412; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.58.77.98 (0.096 с.)