Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Дифференциал функции одной переменной для приближенных вычисленийСодержание книги
Поиск на нашем сайте
Коль скоро мы не объяснили (на данный момент) строго, что такое производная функции, то не имеет смысла объяснять, и что такое дифференциал функции. В самой примитивной формулировке дифференциал – это «почти то же самое, что и производная». Точнее – это производная, умноженная на приращение аргумента функции. Производная функции чаще всего обозначается через . Дифференциал функции стандартно обозначается через (так и читается – «дэ игрек») Дифференциал функции одной переменной записывается в следующем виде: Другой вариант записи: Простейшая задача: Найти дифференциал функции 1) Первый этап. Найдем производную: 2) Второй этап. Запишем дифференциал: Готово.
Дифференциал функции одной или нескольких переменных чаще всего используют для приближенных вычислений. Помимо других задач с дифференциалом время от времени встречается и «чистое» задание на нахождение дифференциала функции. Кроме того, как и для производной, для дифференциала существует понятие дифференциала в точке. И такие примеры мы тоже рассмотрим.
Пример 7 Найти дифференциал функции . Перед тем, как находить производную или дифференциал, всегда целесообразно посмотреть, а нельзя ли как-нибудь упростить функцию (или запись функции) ещё до дифференцирования? Смотрим на наш пример. Во-первых, можно преобразовать корень: (корень пятой степени относится именно к синусу). Во-вторых, замечаем, что под синусом у нас дробь, которую, очевидно, предстоит дифференцировать. Формула дифференцирования дроби очень громоздка. Нельзя ли избавиться от дроби? В данном случае – можно, почленно разделим числитель на знаменатель: Функция сложная. В ней два вложения: под степень вложен синус, а под синус вложено выражение . Найдем производную, используя правило дифференцирования сложной функции два раза: Запишем дифференциал, при этом снова представим в первоначальном «красивом» виде: Готово. Когда производная представляет собой дробь, значок обычно «прилепляют» в самом конце числителя (можно и справа на уровне дробной черты).
Пример 8 Найти дифференциал функции . Это пример для самостоятельного решения.
Следующие два примера на нахождение дифференциала в точке.
Пример 9 Вычислить дифференциал функции в точке Найдем производную: Производная вроде бы найдена. Но в это всё предстоит еще подставлять число, поэтому результат максимально упрощаем: Труды были не напрасны, записываем дифференциал: Теперь вычислим дифференциал в точке : В значок дифференциала единицу подставлять не нужно, он немного из другой оперы. Ну и хорошим тоном в математике считается устранение иррациональности в знаменателе. Для этого домножим числитель и знаменатель на . Окончательно:
Пример 10 Вычислить дифференциал функции в точке . В ходе решения производную максимально упростить. Это пример для самостоятельного решения. Примерный образец оформления и ответ в конце урока.
Вторая производная
Всё очень просто. Вторая производная – это производная от первой производной: Стандартные обозначения второй производной: , или (дробь читается так: «дэ два игрек по дэ икс квадрат»).
Чаще всего вторую производную обозначают первыми двумя вариантами. Но третий вариант тоже встречается, причем, его очень любят включать в условия контрольных заданий, например: «Найдите функции…». А студент сидит и битый час чешет репу, что это вообще такое, и почему в дроби d не сокращены.
Рассмотрим простейший пример. Найдем вторую производную от функции . Для того чтобы найти вторую производную, как многие догадались, нужно сначала найти первую производную: Теперь находим вторую производную: Готово.
Рассмотрим более содержательные примеры.
Пример 11 Найти вторую производную функции Найдем первую производную: На каждом шаге всегда смотрим, нельзя ли что-нибудь упростить? Сейчас нам предстоит дифференцировать произведение двух функций, и мы избавимся от этой неприятности, применив известную тригонометрическую формулу . Точнее говоря, использовать формулу будем в обратном направлении: : Находим вторую производную: Готово. Можно было пойти другим путём – понизить степень функции еще перед дифференцированием, используя формулу : Если интересно, возьмите первую и вторую производные снова. Результаты, естественно, совпадут.
Отметим, что понижение степени бывает очень выгодно при нахождении частных производных функции. Здесь же оба способа решения будут примерно одинаковой длины и сложности. Как и для первой производной, можно рассмотреть задачу нахождения второй производной в точке. Например: Вычислим значение найденной второй производной в точке : Необходимость находить вторую производную и вторую производную в точке возникает при исследовании графика функции на выпуклость/вогнутость и перегибы.
Пример 12 Найти вторую производную функции . Найти . Это пример для самостоятельного решения.
Аналогично можно найти третью производную, а также производные более высоких порядков. Такие задания встречаются, но значительно реже.
Решения и ответы: Пример 2: Найдем производную: Вычислим значение функции в точке :
Пример 4: Найдем производную:
Вычислим производную в заданной точке:
Пример 6: Уравнение касательной составим по формуле 1) Вычислим значение функции в точке :
2) Найдем производную. Перед дифференцированием функцию выгодно упростить:
3) Вычислим значение производной в точке :
4) Подставим значения , и в формулу :
Пример 8: Преобразуем функцию:
Найдем производную:
Запишем дифференциал:
Пример 10: Найдем производную:
Запишем дифференциал:
Вычислим дифференциал в точке : .
Пример 12: Найдем первую производную:
Найдем вторую производную:
Частные производные. Примеры решений
На данном уроке мы познакомимся с понятием функции двух переменных, а также подробно рассмотрим наиболее распространенное задание – нахождение частных производных первого и второго порядка, полного дифференциала функции. Для эффективного изучения нижеизложенного материала Вам необходимо уметь более или менее уверенно находить «обычные» производные функции одной переменной. Научиться правильно обращаться с производными можно на уроках Как найти производную? и Производная сложной функции. Также нам потребуется таблица производных элементарных функций и правил дифференцирования, удобнее всего, если она будет под рукой в распечатанном виде. Начнем с самого понятия функции двух переменных, постараемся ограничиться минимумом теории, так как сайт имеет практическую направленность. Функция двух переменных обычно записывается как , при этом переменные , называются независимыми переменными или аргументами.
Пример: - функция двух переменных. Иногда используют запись . Также встречаются задания, где вместо буквы используется буква . Полезно знать геометрический смысл функций. Функции одной переменной соответствует определенная линия на плоскости, например, – всем знакомая школьная парабола. Любая функция двух переменных с геометрической точки зрения представляет собой поверхность в трехмерном пространстве (плоскости, цилиндры, шары, параболоиды и т.д.). Но, собственно, это уже аналитическая геометрия, а у нас на повестке дня математический анализ. Переходим к вопросу нахождения частных производных первого и второго порядков. Должен сообщить хорошую новость для тех, кто выпил несколько чашек кофе и настроился на невообразимо трудный материал: частные производные – это почти то же самое, что и «обычные» производные функции одной переменной. Для частных производных справедливы все правила дифференцирования и таблица производных элементарных функций. Есть только пара небольших отличий, с которыми мы познакомимся прямо сейчас.
Пример 1 Найти частные производные первого и второго порядка функции
Сначала найдем частные производные первого порядка. Их две. Обозначения: или – частная производная по «икс» или – частная производная по «игрек» Начнем с . Важно! Когда мы находим частную производную по «икс», то переменная считается константой (постоянным числом). Решаем. На данном уроке будем сразу приводить полное решение, а комментарии давать ниже. Комментарии к выполненным действиям: (1) Первое, что мы делаем при нахождении частной производной – заключаем всю функцию в скобки под штрих с подстрочным индексом. Внимание, важно! Подстрочные индексы НЕ ТЕРЯЕМ по ходу решения. В данном случае, если Вы где-нибудь нарисуете «штрих» без , то преподаватель, как минимум, может поставить рядом с заданием (сразу откусить часть балла за невнимательность). Далее данный шаг комментироваться не будет, все сделанные замечания справедливы для любого примера по рассматриваемой теме. (2) Используем правила дифференцирования ; . Для простого примера, как этот, оба правила вполне можно применить на одном шаге. Обратите внимание на первое слагаемое: так как считается константой, а любую константу можно вынести за знак производной, то мы выносим за скобки. То есть в данной ситуации ничем не лучше обычного числа. Теперь посмотрим на третье слагаемое : здесь, наоборот, выносить нечего. Так как константа, то – тоже константа, и в этом смысле она ничем не лучше последнего слагаемого – «семерки». (3) Используем табличные производные и . (4) Упрощаем ответ. Теперь определим . Когда мы находим частную производную по «игрек», то переменная считается константой (постоянным числом). (1) Используем те же правила дифференцирования ; . В первом слагаемом выносим константу за знак производной, во втором слагаемом ничего вынести нельзя поскольку – уже константа. (2) Используем таблицу производных элементарных функций. Мысленно поменяем в таблице все «иксы» на «игреки». То есть данная таблица рАвно справедлива для (и вообще для любой буквы). В данном случае, используемые нами формулы имеют вид: и . Итак, частные производные первого порядка найдены
|
||||
Последнее изменение этой страницы: 2017-01-19; просмотров: 379; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.58.18.135 (0.012 с.) |