Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Многокритериальный выбор управленческих решенийСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
В задачах принятия решений часто возникает необходимость оценки выбора по многим показателям, характеризующим различные стороны их качества и конкретизирующим понятие «достижение целей». Формулировка целей решения проблем производится обычно в общей содержательной форме. Поэтому конкретизация целей осуществляется путем введения совокупности показателей достижения целей. Важным требованием, предъявляемым к показателям, является их измеримость. Формулировка критерия выбора в виде максимальной степени достижения целей конкретизируется, как достижение экстремальных (max или min) значений показателя. Следовательно, критериями выбора оптимального решения становятся экстремальные значения показателей достижения целей. В связи с этим для случая индивидуального ЛПР рассматриваемая задача получила название многокритериального выбора. Для группового ЛПР эта задача называется групповым многокритериальным выбором. При построении многокритериальных моделей принятия решений должны учитываться следующие основные положения [33]: · модель создается исследователем для структуризации и уточнения лица, принимающего решения, которое непосредственно участвует в ее разработке; · модель должна быть логически непротиворечива; · модель должна давать возможность использовать реальную информацию о задаче, полученную от экспертов, ЛПР; · модель должна быть достаточно простой и удобной для анализа и использования ЛПР. Под критериями принимают такие показатели, которые: · признаются ЛПР в качестве характеристик степени достижения поставленной цели; · являются общими и измеримыми для всех допустимых решений; · характеризуют общую ценность решений таким образом, что у ЛПР имеется стремление получать по ним наиболее предпочтительные оценки (то есть в качестве критериев не следует использовать ограничения). Критерии, применяемые для решения многокритериальных задач, должны отвечать следующим принципам: · минимальности – постановочная часть задачи должна содержать как можно меньшее число критериев, а отбрасывание хотя бы одного из них меняет результат; · измеримости – каждый критерий должен допускать возможность количественной (в крайнем случае, качественной) оценки степени достижения соответствующей цели; · неповторимости, то есть разные критерии не должны учитывать одну и ту же сторону решения; · четкости, при которой каждый критерий должен иметь понятную для ЛПР формулировку, ясный и однозначный смысл, характеризовать определенный аспект решения. Эти требования, конечно, противоречивы, но ясное представление о них позволяет строить полноценный набор критериев. При этом есть необходимость указать на некоторые частные и типичные пробелы, наблюдаемые в анализе многокритериальных задач принятия решений: · нет полного списка допустимых решений; · нет полного списка критериев, характеризующих качества решений; · не построены все или некоторые шкалы критериев; · нет оценок вариантов решений по шкалам критериев; · нет решающего правила, позволяющего получить требуемое в задаче упорядочение вариантов решения (решающее правило, метод принятия решения, представляет собой принцип сравнения векторных оценок и формирования суждения о предпочтительности одних из них по отношению к другим). Известно, что возможности человека по переработке многомерной информации очень ограничены, поэтому вероятность ошибочных действий ЛПР достаточно велика. В рамках рассматриваемого подхода были предложены два варианта проверки действий ЛПР. Первый – критерий непротиворечивости: в аналогичных ситуациях оценки или сравнения альтернатив руководитель должен принимать одинаковые решения. Этот критерий основан на предположении о существовании у ЛПР определенной, непротиворечивой политики. Отметим, что при всей естественности такого предположения, при всей очевидной его справедливости в реальных ситуациях так бывает не всегда. Второй критерий для оценки деятельности ЛПР – критерий транзитивности, который для трех альтернатив А, В, С можно записать так: 1) Если А > В, B > C, то A>C (для отношения предпочтения); 2) Если А=В, В=С, то А=С (для отношения безразличия). При нарушении транзитивности возникает порочный круг типа A>B, B>C, C>A и выделить предпочтительный вариант невозможно. Как и в случае с первым критерием, надо сказать, что в реальных ситуациях появление нетранзитивности в предпочтениях ЛПР вполне возможно. В специальной литературе обсуждаются как причины появления противоречивости и нетранзитивности, так и способы выхода из этих достаточно сложных ситуаций. Здесь же отметим, что для ЛПР имеет смысл сознательно избегать нарушения указанных критериев. Известно, что для человека сложными являются: · задачи с большой нагрузкой на понятийный аппарат; · задачи, требующие параллельной обработки многомерной информации; · задачи сравнения альтернатив с малыми уровнями различимости; · задачи, имеющие значительное число критериев (5-6-7 и больше); · показатели со значительным числом оценок на шкалах критериев (5 и больше); · показатели с большим числом результирующих классов решений (5-6 и больше). Характерными для такого подхода, о котором сейчас идет речь, являются следующие особенности. Для описания ситуаций принятия решения используется естественный язык данной организации: понятия хуже» и «лучше» для каждого критерия формулируются в виде развернутых словесных определений. При сборе информации используются лишь такие вопросы, для которых заранее была установлена возможность получения надежных, непротиворечивых ответов. На основе опыта и интуиции ЛПР определены общие правила оценки вариантов, определен перечень критериев оценивания. Во многих случаях целесообразно использовать шкалы качественных критериев со словесными оценками градаций качества. При этом можно ввести в рассмотрение достаточно сложные понятия: описать большое число факторов, имеющих отношения к рассматриваемой ситуации; можно учесть неопределенность, связанную с неполным знанием последствий принимаемых решений, и риск, связанный с выбором некоторых альтернатив. Критерии с качественными шкалами, оценки по которым четкие, однозначные, хорошо различимые, являются эффективным средством получения информации от экспертов, повышают достоверность этой информации, так как эксперт рассматривает альтернативные варианты через призму предпочтения ЛПР. Словесные шкалы оценок соответствуют изменению качества от лучшего к худшему значению. Эти шкалы – порядковые. Надо заметить, что использование этих шкал не исключает перехода к количественным оценкам, скажем, с использованием аппарата размытых, нечетких множеств, о котором речь шла выше. При использовании шкал качественных критериев человек обычно может последовательно и непротиворечиво определять превосходство среди объектов, отличающихся оценками по двум критериям. Если по остальным критериям оценки объектов одинаковы и являются либо лучшими, либо худшими (число критериев при этом может достигать 7-8 штук, а число оценок по каждому из них может достигать 5-6 штук). С помощью экспертов обычно получают ответ на вопрос, какая ситуация хуже при поочередном ухудшении качества по каждому из рассматриваемых критериев. По результатам ответов можно построить единую шкалу оценок для данной пары критериев. Эту процедуру можно повторить для всех других пар критериев, причем одновременно идет проверка предпочтения на непротиворечивость и транзитивность. Полученная информация представляет собой соответствующие двум ситуациям (сначала лучшие оценки по фиксированным критериям, затем худшие) системы линейных неравенств и равенств, отображающие сравнения падений качества вдоль осей разных критериев. В результате возникает множество доминирующих или несравнимых альтернатив. Если их исключить из множества всех альтернатив, то среди оставшихся можно снова выделить доминирующие или несравнимые и т.д. В итоге получают группы лучших, средних, худших альтернатив, которые позволяют ЛПР принять решение. Конечно, использование формальных методов, в частности ИСО (исследование операций), существенно повышает качество принимаемых решений. В случае, если все показатели могут быть измерены в одной и той же шкале и приведены к одной единице измерения, например, денежной оценке, то решение такой задачи является элементарной. Здесь задача характеризуется набором вариантов решений, предпочтения которых оцениваются одним обобщенным показателем. Значения этого показателя упорядочивают решения по предпочтительности, поэтому оптимальное решение определяется на основе одного критерия, соответствующего экстремуму обобщенного показателя. В большинстве случаев не удается достаточно просто свести показатели достижения целей к одному обобщенному. Поэтому задача выбора заключается в определении оптимального решения с учетом всей совокупности показателей. В связи с этим возникает необходимость их согласования с целью выработки наилучшего решения. В таких случаях попытки конкретизировать цель выливаются обычно в составление некоторого списка требований, состоящего из набора Ui (х,у), (i=1,2, …, n) частных показателей эффективности (критериев), совокупное увеличение которых и представляется оперирующей стороне целью операции (оптимизации). Однако эти частные показатели (критерии), как правило, оказываются несогласованными, то есть увеличение одних из них может привести к уменьшению других, что делает проблему оптимального выбора противоречивой и неоднозначной. Например, разработчикам приходится оценивать некоторый план только по двум критериям (если показателей больше, то сложность оценки увеличивается): прибыль и трудоемкость. Если какое-то изменение плана улучшает некий показатель, но при этом ухудшает какой-то другой показатель, то планы не сопоставимы. Зато они становятся сопоставимыми, если все показатели одного плана лучше (или скорее не хуже) всех показателей другого плана. Иначе говоря, вполне возможно считать оптимальным такой план, в котором нельзя улучшить ни один показатель, не ухудшив при этом какого-то другого показателя. Скажем, найден план с прибылью 10 тыс. у.е. и трудоемкостью 15 тыс. чел.-дн. И всякая попытка изменить этот план или снижает прибыль или увеличивает трудоемкость. По Парето, такой план оптимален. Однако, с другой стороны, почти в любой задаче планирования много оптимумов Парето и вопрос равнозначен решению первоначальной задачи, то есть дело по сути не сдвинулось с места. В теории ИСО, в которых цель операции выражается столь неопределенно, что не может быть отражена в едином критерии эффективности, обычно называют многокритериальными. Одним из распространенных, но, к сожалению, малоэффективных способов борьбы с многокритериальностью является так называемое свертывание частных критериев в некоторый единый критерий. Наиболее распространенные способы свертывания частных критериев следующие: · способ формирования цели качественного типа; · логическое свертывание; · обобщенное логическое свертывание; · линейное свертывание[1]. 1. Способ формирования цели качественного типа. Под качественными целями понимаются цели, которые могут быть только или достигнуты, или не достигнуты. все результаты операции, приводящие к достижению, одинаково хороши; точно так же все результаты, не приводящие к достижению цели, одинаково неудовлетворительны. Критерий эффективности в этом случае принимает два значения, например: 1 – в случае успеха и 0 – в противоположном случае. Свертывание частных критериев в качественный тип осуществляется разбиением множества значений частных критериев на удовлетворительные и неудовлетворительные. Назначаются некоторые числа Ui°(I=1,2, …, n), и удовлетворительными значениями объявляются только такие, для которых
При этом критерий–свертка может быть выражен через некоторый функционал W - критерий эффективности*:
Этот способ образования единого критерия наиболее доступен пониманию оперирующей стороны, так как ближе всего отражает смысл требований, налагаемых на значения частных критериев. Однако трудности корректного назначения чисел так, чтобы не потерять наиболее эффективные способы действий или не попасть в область недостижимых значений, делают эту процедуру не менее противоречивой и неоднозначной, чем стремление к одновременному увеличению значений всех частных критериев. 2. Логическое свертывание. Если частные критерии Ui(x,y) являются критериями качественного типа, принимающими только значения 0 или 1, то для их свертывания можно использовать два подхода логических операций: а) конъюнкция. Единая цель состоит в выполнении всех частных целей:
б) дизъюнкция. Единая цель состоит в выполнении хотя бы одной из частных целей:
Это наиболее конструктивный способ свертывания частных критериев. Однако он имеет ограниченное применение, так как годен для качественных целей. 1. Обобщенное логическое свертывание. Прямым обобщением действий предыдущего пункта является вместо (6.9) следующее выражение:
и вместо (6.10) выражение:
где li – значения весовых коэффициентов критериев. Эти способы свертывания применимы для любых типов критериев. Выражение (6.11) немедленно превращается в (6.9), если все Ui(x,y) принимают только значения 0; 1, а li=1. точно так же в этом случае (6.12) эквивалентно (6.10). Трудности, связанные с таким типом свертывания, обусловлены неопределенностью при выборе конкретных значений весовых коэффициентов li, однако такого типа свертки могут оказаться чрезвычайно полезными при решении сложных задач теории ИСО. 2. Линейное свертывание. Единый коэффициент эффективности представляют в виде линейной комбинации частных критериев: 3.
Этот способ обычно называют экономическим способом свертывания, так как весовые коэффициенты li часто выступает в роли цен на i-й товар и W представляет собой суммарную выручку. Назначение конкретных значений коэффициентов li, как и в способе 3 (обобщенное логическое свертывание), также вызывает немалые затруднения. В теории ИСО имеется большой класс многокритериальных задач, когда частные критерии Ui не зависят от неопределенных факторов У. В этом случае стремление увеличивать значение каждого из частных критериев не столь уже противоречиво, если проводить процедуру достаточно корректно (см. работу Краснощекова П.К.). Данный подход можно использовать при решении проблем проектирования сложных технических систем и объектов, что, к сожалению, носит узконаправленный характер и применять его для решения экономических задач, где слишком велико значение факторов У, проблематично. Поэтому при принятии управленческих решений часто склоняются к выработке единого комплексного показателя эффективности, который, для ранее приведенного примера в наших рассуждениях, может быть представлен в виде:
где Пр – прибыль, Т – трудозатраты, а l1 и l2 – весовые коэффициенты, показывающие относительную важность каждого показателя и уравнивающие размерности. Для отыскания весовых коэффициентов часто используют метод экспертных оценок, если ЛПР и разработчики затрудняются с их назначением. Иногда разработчики применяют так называемый «метод последовательных уступок» [8]. Решение задачи обычно осуществляется в следующем порядке: · рассматриваемые критерии ранжируются по приоритетности; · формулируются целевые функции по каждому критерию; · определяется оптимум по критерию, находящемуся на первой ступени приоритетности; · производится корректировка полученного результата в соответствии со следующей по рангу целевой функцией и переходят аналогичным образом к последующей. Такими последовательными действиями в форме корректировок и ищут оптимальные решения по нескольким целевым функциям. Теоретическая сложность решения многокритериальных задач заставляет исследователей-практиков искать методы и подходы, способствующие получению приемлемых результатов. Эти результаты, безусловно, менее точны, чем те, которые могут быть получены с помощью формальных методов, но они вполне отвечают главному требованию решения любой управленческой задачи – это выбору лучшего действия или получению приемлемого результата. Исходя из этих соображений, на практике применяют два подхода, которые проиллюстрированы на примере принятия решений по обновлению продукции производства (см. книгу первую, часть 3, гл. 8.3). В процессе выработки решения ЛПР приходится неоднократно сталкиваться с трудностями, которые в одиночку бывает разрешить весьма сложно. В этих случаях руководитель часто прибегает к групповому (коллективному) выбору решений. Данный подход может привести если не к окончательному выбору альтернативы, то, по крайней мере, оказывает несомненную помощь ЛПР в последующих действиях. Исходя из этих позиций, думается целесообразно рассмотреть сущность группового выбора и правила большинства.
|
||||||||||||||||||||
Последнее изменение этой страницы: 2017-01-23; просмотров: 1723; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.133.134.92 (0.012 с.) |