ТОП 10:

Лекция 3. Принятие решений в условиях неопределенности. Принятие решений в условиях риска



Системный Анализ

 

 

Для подготовки бакалавров по направлению 200100–“Приборостроение”

 

 

Факультет Информационно-Измерительных и Биотехнических систем

Кафедра Информационно-измерительные системы и технологии

 

Курс - 3

Семестр - 5

 

 

 

 

 

 

Санкт-Петербург

 

 

Оглавление

 

Лекция 1. Теория принятия решений. Основные понятия и определения. 3

Лекция 2. Основные понятия исследования операций. Постановка задач принятия оптимальных решений 9

Лекция 3. Принятие решений в условиях неопределенности. Принятие решений в условиях риска 12

Лекция 4. Постановка задачи стохастического программирования. Метод статистического моделирования 16

Лекция 5. Учет неопределенных пассивных условий. Учет активных условий. 20

Лекция 6. Постановка задачи линейного программирования. Виды задач линейного программирования 24

Лекция 7. Геометрическое решение задач линейного программирования. Основные теоремы линейного программирования. Симплекс метод для решения задач линейного программирования. 30

Лекция 8. Основные понятия и определения теории игр. 42

Лекция 9. Матричные игры. Решение матричных игр в чистых стратегиях. 44

Лекция 10. Смешанное расширение матричных игр. Свойства решений матричных игр. 47

Лекция 11. Игры порядка 2 х 2. Графический метод решения игр 2 х n и m x 2. 53

Лекция 12. Сведение матричной игры к задаче линейного программирования. 58

Лекция 13. Основы теории систем массового обслуживания. Предмет теории массового обслуживания. 61

Лекция 14. Основы марковских процессов. Уравнения Колмогорова. 62

Лекция 15. Предельные вероятности состояний. Простейший поток событий. 67

Лекция 16. Модели систем массового обслуживания при пуассоновских потоках заявок. Модели систем массового обслуживания с отказами. 75

Лекция 17. Модель простейшей одноканальной системы массового обслуживания с очередями. 81

Лекция 18. Модель многоканальной системы массового обслуживания с очередями. 84

Список литературы.. 89


Лекция 1. Теория принятия решений. Основные понятия и определения

Человек наделён сознанием, существо свободное и обречено на выбор решений, стараясь сделать всё наилучшим образом. В наиболее общем смысле теория принятия оптимальных решений представляет собой совокупность математических и численных методов, ориентированных на нахождение наилучших вариантов из множества альтернатив и позволяющих избежать их полного перебора. Ввиду того, что размерность практических задач, как правило, достаточно велика, а расчеты в соответствии с алгоритмами оптимизации требуют значительных затрат времени, то методы принятия оптимальных решений главным образом ориентированы на реализацию их с помощью ЭВМ.

Практическая потребность общества в научных основах принятия решений возникла с развитием науки и техники только в XVIII веке Началом науки "Теория принятия решений" следует считать работу Жозефа Луи Лагранжа, смысл которой заключался в следующем: сколько земли должен брать на лопату землекоп, чтобы его сменная производительность была наибольшей. Оказалось, что утверждение "бери больше, кидай дальше" неверен. Бурный рост технического прогресса, особенно во время и после второй мировой войны, ставил все новые и новые задачи, для решения которых привлекались и разрабатывались новые научные методы. Можно выделить следующие научно-технические предпосылки становления "Теории принятия решений":

  • удорожание "цены ошибки". Чем сложнее, дороже, масштабнее планируемое мероприятие, тем менее допустимы в нем "волевые" решения и тем важнее становятся научные методы, позволяющие заранее оценить последствия каждого решения, заранее исключить недопустимые варианты и рекомендовать наиболее удачные;
  • ускорение научно-технической революции техники и технологии. Жизненный цикл технического изделия сократился настолько, что "опыт" не успевал накапливаться и требовалось применение более развитого математического аппарата в проектировании;
  • развитие ЭВМ. Размерность и сложность реальных инженерных задач не позволяло использовать аналитические метода.

Как часто это бывает, эта наука, с одной стороны, стала определенной ветвью других более общих наук (теория систем, системный анализ, кибернетика и т.д.), а с другой, стала синтезом определенных фундаментальных более частных наук (исследование операций, оптимизация и т.д.), создав при этом и собственную методологию.

Инженерное дело теснейшим образом связано с совокупностями объектов, которые принято называть сложными системами, которые характеризуются многочисленными и разнообразными по типу связями между отдельно существующими элементами системы и наличием у системы функции назначения, которой нет у составляющих ее частей. На первый взгляд каждая сложная система имеет уникальную организацию. Однако более детальное изучение способно выделить общее в системе команд ЭВМ, в процессах проектирования лесной машины, самолета и космического корабля.

В научно-технической литературе существует ряд термином, имеющих отношение к исследованию сложных систем.

Наиболее общий термин "теория систем" относится ко всевозможным аспектам исследования систем. Ее основными частями являются

  • системный анализ, который понимается как исследование проблемы принятия решения в сложной системе,
  • кибернетика, которая рассматривается как наука об управлении и преобразовании информации.

Здесь следует заметить, что понятие управления не совпадает с принятием решения. Условная граница между кибернетикой и системным анализом состоит в том, что первая изучает отдельные и строго формализованные процессы, а системный анализ - совокупность процессов и процедур.

Очень близкое к термину "системный анализ" понятие - "исследование операций", которое традиционно обозначает математическую дисциплину, охватывающую исследование математических моделей для выбора величин, оптимизирующих заданную математическую конструкцию (критерий). Системный анализ может сводиться к решению ряда задач исследования операций, но обладает свойствами, не охватываемыми этой дисциплиной. Однако в зарубежной литературе термин "исследование операций" не является чисто математическим и приближается к термину "системный анализ". Широкая опора системного анализа на исследование операций приводит к таким его математизированным разделам, как

  • постановка задач принятия решения;
  • описание множества альтернатив;
  • исследование многокритериальных задач;
  • методы решения задач оптимизации;
  • обработка экспертных оценок;
  • работа с макромоделями системы.

Системный анализ - наука, занимающаяся проблемой принятия решения в условиях анализа большого количества информации различной природы.

Из определения следует, что целью применения системного анализа к конкретной проблеме является повышение степени обоснованности принимаемого решения, расширение множества вариантов, среди которых производится выбор, с одновременным указанием способов отбрасывания заведомо уступающим другим.

В системном анализе выделяют

  • методологию;
  • аппаратную реализацию;
  • практические приложения.

Методологиявключает определения используемых понятий и принципы системного подхода.

Дадим основные определения системного анализа.

Элемент - некоторый объект (материальный, энергетический, информационный), который обладает рядом важных для нас свойств, но внутреннее строение (содержание) которого безотносительно к цели рассмотрения.

Связь - важный для целей рассмотрения обмен между элементами веществом, энергией, информацией.

Система - совокупность элементов, которая обладает следующими признаками:

  • связями, которые позволяют посредством переходов по ним от элемента к элементу соединить два любых элемента совокупности;
  • свойством, отличным от свойств отдельных элементов совокупности.

Практически любой объект с определенной точки зрения может быть рассмотрен как система. Вопрос состоит в том, насколько целесообразна такая точка зрения.

Большая система - система, которая включает значительное число однотипных элементов и однотипных связей. В качестве примера можно привести трубопровод. Элементами последнего будут участки между швами или опорами. Для расчетов на прочность по методу конечных элементов элементами системы считаются небольшие участки трубы, а связь имеет силовой (энергетический) характер - каждый элемент действует на соседние.

Сложная система - система, которая состоит из элементов разных типов и обладает разнородными связями между ними. В качестве примера можно привести ЭВМ, лесной трактор или судно.

Автоматизированная система - сложная система с определяющей ролью элементов двух типов:

  • в виде технических средств;
  • в виде действия человека.

Для сложной системы автоматизированный режим считается более предпочтительным, чем автоматический. Например, посадка самолета или захват дерева харвестерной головкой выполняется при участии человека, а автопилот или бортовой компьютер используется лишь на относительно простых операциях. Типична также ситуация, когда решение, выработанное техническими средствами, утверждается к исполнению человеком.

Структура системы - расчленение системы на группы элементов с указанием связей между ними, неизменное на все время рассмотрения и дающее представление о системе в целом. Указанное расчленение может иметь материальную, функциональную, алгоритмическую или другую основу. Пример материальной структуры - структурная схема сборного моста, которая состоит из отдельных, собираемых на месте секций и указывает только эти секции и порядок их соединения. Пример функциональной структуры - деление двигателя внутреннего сгорания на системы питания, смазки, охлаждения, передачи крутящего момента. Пример алгоритмической структуры - алгоритм программного средства, указывающего последовательность действий или инструкция, которая определяет действия при отыскании неисправности технического устройства.

Структура системы может быть охарактеризована по имеющимся в ней типам связей. Простейшими из них являются последовательное, параллельное соединение и обратная связь.

Декомпозиция - деление системы на части, удобное для каких-либо операций с этой системой. Примерами будут: разделение объекта на отдельно проектируемые части, зоны обслуживания; рассмотрение физического явления или математическое описание отдельно для данной части системы.

Иерархия - структура с наличием подчиненности, т.е. неравноправных связей между элементами, когда воздействие в одном из направлений оказывают гораздо большее влияние на элемент, чем в другом. Виды иерархических структур разнообразны, но важных для практики иерархических структур всего две - древовидная и ромбовидная .

Древовидная структура наиболее проста для анализа и реализации. Кроме того, в ней всегда удобно выделять иерархические уровни - группы элементов, находящиеся на одинаковом удалении от верхнего элемента. Пример древовидной структуры - задача проектирования технического объекта от его основных характеристик (верхний уровень) через проектирование основных частей, функциональных систем, групп агрегатов, механизмов до уровня отдельных деталей.

Принципы системного подхода- это положения общего характера, являющиеся обобщением опыта работы человека со сложными системами. Их часто считают ядром методологии. Известно около двух десятков таких принципов, ряд из которых целесообразно рассмотреть:

  • принцип конечной цели: абсолютный приоритет конечной цели;
  • принцип единства: совместное рассмотрение системы как целого и как совокупности элементов;
  • принцип связности: рассмотрение любой части совместно с ее связями с окружением;
  • принцип модульного построения: полезно выделение модулей в системе и рассмотрение ее как совокупности модулей;
  • принцип иерархии: полезно введение иерархии элементов и(или) их ранжирование;
  • принцип функциональности: совместное рассмотрение структуры и функции с приоритетом функции над структурой;
  • принцип развития: учет изменяемости системы, ее способности к развитию, расширению, замене частей, накапливанию информации;
  • принцип децентрализации: сочетание в принимаемых решениях и управлении централизации и децентрализации;
  • принцип неопределенности: учет неопределенностей и случайностей в системе.

Аппаратная реализация включает стандартные приемы моделирования принятия решения в сложной системе и общие способы работы с этими моделями. Модель строится в виде связных множеств отдельных процедур. Системный анализ исследует как организацию таких множеств, так и вид отдельных процедур, которые максимально приспосабливают для принятия согласующихся и управленческих решений в сложной системе.

Модель принятия решения чаще всего изображается в виде схемы с ячейками, связями между ячейками и логическими переходами. Ячейки содержат конкретные действия - процедуры. Совместное изучение процедур и их организации вытекает из того, что без учета содержания и особенностей ячеек создание схем оказывается невозможным. Эти схемы определяют стратегию принятия решения в сложной системе. Именно с проработки связанного множества основных процедур принято начинать решение конкретной прикладной задачи.

Отдельные же процедуры (операции) принято классифицировать на формализуемые и неформализуемые. В отличие от большинства научных дисциплин, стремящихся к формализации, системный анализ допускает, что в определенных ситуациях неформализуемые решения, принимаемые человеком, являются более предпочтительными. Следовательно, системный анализ рассматривает в совокупности формализуемые и неформализуемые процедуры, и одной из его задач является определение их оптимального соотношения.

Формализуемые стороны отдельных операций лежат в области прикладной математики и использования ЭВМ. В ряде случаев математическими методами исследуется связное множество процедур и производится само моделирование принятие решения. Все это позволяет говорить о математической основе системного анализа. Такие области прикладной математики, как исследование операций и системное программирование, наиболее близки к системной постановке вопросов.

Практическое приложениесистемного анализа чрезвычайно обширно по содержанию. Важнейшими разделами являются научно-технические разработки и различные задачи экономики. Ссылки на системность исследований, анализа, подхода включает биологию, экологию, военное дело, психологию, социологию, медицину, управление государством и регионом, лесное и сельское хозяйство, обучение и многое другое.


 

Лекция 2. Основные понятия исследования операций. Постановка задач принятия оптимальных решений

Операцией называется всякое мероприятие (система действий), объединенное единым замыслом и направленное к достижению какой-то цели.

Цель исследования операций - предварительное количественное обоснование оптимальных решений.

Всякий определенный выбор зависящих от нас параметров называется решением. Оптимальным называются решения, по тем или другим признакам предпочтительные перед другими.

Параметры, совокупность которых образует решение, называются элементами решения.

Множеством допустимых решений называются заданные условия, которые фиксированы и не могут быть нарушены.

Показатель эффективности - количественная мера, позволяющая сравнивать разные решения по эффективности.

Все решения принимаются всегда на основе информации, которой располагает лицо принимающее решение (ЛПР).

Каждая задача в своей постановке должна отражать структуру и динамику знаний ЛПР о множестве допустимых решений и о показателе эффективности.

Задача называется статической, если принятие решения происходит в наперед известном и не изменяющемся информационном состоянии. Если информационное состояние в ходе принятия решения сменяют друг друга, то задача называется динамической.

Информационные состояния ЛПР могут по-разному характеризовать его физическое состояние:

  • Если информационное состояние состоит из единственного физического состояния, то задача называется определенной.
  • Если информационное состояние содержит несколько физических состояний и ЛПР кроме их множества знает еще и вероятности каждого из этих физических состояний, то задача называется стохастической (частично неопределенной).
  • Если информационное состояние содержит несколько физических состояний, но ЛПР кроме их множества ничего не знает о вероятности каждого из этих физических состояний, то задача называется неопределенной.

Несмотря на то, что методы принятия решений отличаются универсальностью, их успешное применение в значительной мере зависит от профессиональной подготовки специалиста, который должен иметь четкое представление о специфических особенностях изучаемой системы и уметь корректно поставить задачу. Искусство постановки задач постигается на примерах успешно реализованных разработок и основывается на четком представлении преимуществ, недостатков и специфики различных методов оптимизации. В первом приближении можно сформулировать следующую последовательность действий, которые составляют содержание процесса постановки задачи:

  • установление границы подлежащей оптимизации системы, т.е. представление системы в виде некоторой изолированной части реального мира. Расширение границ системы повышает размерность и сложность многокомпонентной системы и, тем самым, затрудняет ее анализ. Следовательно, в инженерной практике следует к декомпозиции сложных систем на подсистемы, которые можно изучать по отдельности без излишнего упрощения реальной ситуации;
  • определение показателя эффективности, на основе которого можно оценить характеристики системы или ее проекта с тем, чтобы выявить "наилучший" проект или множество "наилучших" условий функционирования системы. В инженерных приложениях обычно выбираются показатели экономического (издержки, прибыль и т.д.) или технологического (производительность, энергоемкость, материалоемкость и т.д.) характера. "Наилучшему" варианту всегда соответствует экстремальное значение показателя эффективности функционирования системы;
  • выбор внутрисистемных независимых переменных, которые должны адекватно описывать допустимые проекты или условия функционирования системы и способствовать тому, чтобы все важнейшие технико-экономические решения нашли отражение в формулировке задачи;
  • построение модели, которая описывает взаимосвязи между переменными задачи и отражает влияние независимых переменных на значение показателя эффективности. В самом общем случае структура модели включает основные уравнения материальных и энергетических балансов, соотношения, связанные с проектными решениями, уравнения, описывающие физические процессы, протекающие в системе, неравенства, которые определяют область допустимых значений независимых переменных и устанавливают лимиты имеющихся ресурсов. Элементы модели содержат всю информацию, которая обычно используется при расчете проекта или прогнозировании характеристик инженерной системы. Очевидно, процесс построения модели является весьма трудоемким и требует четкого понимания специфических особенностей рассматриваемой системы.

Несмотря на то, модели принятия оптимальных решений отличаются универсальностью, их успешное применение зависит от профессиональной подготовки инженера, который должен иметь полное представление о специфике изучаемой системы. Основная цель рассмотрения приводимых ниже примеров - продемонстрировать разнообразие постановок оптимизационных задач на основе общности их формы.

Все оптимизационные задачи имеют общую структуру. Их можно классифицировать как задачи минимизации(максимизации) M-векторного векторного показателя эффективности Wm(x), m=1,2,...,M, N-мерного векторного аргумента x=(x1,x2,...,xN), компоненты которого удовлетворяют системе ограничений-равенств hk(x)=0, k=1,2...K, ограничений-неравенств gj(x)>0, j=1,2,...J, областным ограничениям xli<xi<xui, i=1,2...N.

Все задачи принятия оптимальных решений можно классифицировать в соответствии с видом функций и размерностью Wm(x), hk(x), gj(x) и размерностью и содержанием вектора x:

  • одноцелевое принятие решений - Wm(x) - скаляр;
  • многоцелевое принятие решений - Wm(x) - вектор;
  • принятие решений в условиях определенности - исходные данные - детерминированные;
  • принятие решений в условиях неопределенности - исходные данные - случайные.

Наиболее разработан и широко используется на практике аппарат одноцелевого принятия решений в условиях определенности, который получил название математического программирования. Математический аппарат одноцелевого принятия решений в условиях неопределенности представляет собой стохастическое программирование (известны законы распределения случайных величин), теории игр и статистических решений (закон распределения случайных величин неизвестен).

Рассмотрим процесс принятия решений с самых общих позиций. Психологами установлено, что решение не является начальным процессом творческой деятельности. Оказывается, непосредственно акту решения предшествует тонкий и обширный процесс работы мозга, который формирует и предопределяет направленность решения. В этот этап, который можно назвать "предрешением" входят следующие элементы:

  • мотивация, то есть желание или необходимость что-то сделать. Мотивация определяет цель какого-либо действия, используя весь прошлый опыт, включая результаты;
  • возможность неоднозначности результатов;
  • возможность неоднозначности способов достижения результатов, то есть свобода выбора.

После этого предварительного этапа следует, собственно, этап принятия решения. Но на нем процесс не заканчивается, т.к. обычно после принятия решения следует оценка результатов и корректировка действий. Таким образом, принятие решений следует воспринимать не как единовременный акт, а как последовательный процесс.

Выдвинутые выше положения носят достаточно общий характер, обычно подробно исследуемый психологами. Более близкой с точки зрения инженера будет следующая схема процесса принятия решения. Эта схема включает в себя следующие компоненты:

  • анализ исходной ситуации;
  • анализ возможностей выбора;
  • выбор решения;
  • оценка последствий решения и его корректировка.

Список литературы

 

Основная литература

 

Название, библиографическое описание
Л1 Пантелеев А.В., Летова Т.А. Методы оптимизации в примерах и задачах : учеб. пособие для втузов /. - М. : Высш. шк., 2002. - 544 с. : ил. - (Прикладная математика для ВТУЗов). - Библиогр.: с. 543-544.
Л2 Антонов А.В. Системный анализ. М.: Высш. шк., 2004. - 453 с. - Библиогр.: с. 446-449.
Л3 Вентцель Е.С., Овчаров Л.А. Теория случайных процессов и ее инженерные приложения. М. : Высш. шк., 2000. - 383 с. : ил. - Библиогр.: с. 378-379
Л4 Вентцель Е.С., Овчаров Л.А. Задачи и упражнения по теории вероятностей:. М. : Высш. шк., 2002. - 448 с. : ил. - Библиогр.: с. 447

Дополнительная литература

Название, библиографическое описание
Д1 Ширяев В.И., Ширяев Е.В. Принятие решений. Математические основы. Статические задачи. М.: Либроком, 2009
Д2 Саати Т.Л. Принятие решений при зависимостях и обратных связях. М: Либроком, 2009.
Д3 Шапкин А.С., Мазаева Н.П. Математические методы и модели исследования операций. М.: Издательство «Дашков и К», 2007
Д4 Юдин Д.Б., Гольштейн Е.Г. Задачи и методы линейного программирования. Математические основы и практические задачи. М.: Либроком, 2010
Д5 Ашманов С.А., Тимохов А.В. Теория оптимизации в задачах и упражнениях. М.:Наука, 1991.
Д6 Оуэн Г. Теория игр. Игры двух лиц с задачами. Игры n лиц. М.: ЛКИ, 2007
Д7 Вентцель Е.С. Исследование операций. Задачи, принципы, методологи. . - М. : Наука, 1988. - 207 с.
Д8 Волков Н.В., Мустафин Н.Г., Пирог В.П.. Методы и алгоритмы решения линейных оптимизационных задач/ Ленинградский электротехнический институт им. В.И. Ульянова (Ленина) (Ленинград). - Л.: ЛЭТИ, 1983. - 64 с.
Д9 Ашманов С.А. Линейное программирование. М. : Наука, 1981. - 304 с. : ил. - Библиогр.: с. 301-302
Д10 Воробьев Н.Н. Основы теории игр. Бескоалиционные игры. М. : Наука, 1984. - 495 с.

Системный Анализ

 

 

Для подготовки бакалавров по направлению 200100–“Приборостроение”

 

 

Факультет Информационно-Измерительных и Биотехнических систем

Кафедра Информационно-измерительные системы и технологии

 

Курс - 3

Семестр - 5

 

 

 

 

 

 

Санкт-Петербург

 

 

Оглавление

 

Лекция 1. Теория принятия решений. Основные понятия и определения. 3

Лекция 2. Основные понятия исследования операций. Постановка задач принятия оптимальных решений 9

Лекция 3. Принятие решений в условиях неопределенности. Принятие решений в условиях риска 12

Лекция 4. Постановка задачи стохастического программирования. Метод статистического моделирования 16

Лекция 5. Учет неопределенных пассивных условий. Учет активных условий. 20

Лекция 6. Постановка задачи линейного программирования. Виды задач линейного программирования 24

Лекция 7. Геометрическое решение задач линейного программирования. Основные теоремы линейного программирования. Симплекс метод для решения задач линейного программирования. 30

Лекция 8. Основные понятия и определения теории игр. 42

Лекция 9. Матричные игры. Решение матричных игр в чистых стратегиях. 44

Лекция 10. Смешанное расширение матричных игр. Свойства решений матричных игр. 47

Лекция 11. Игры порядка 2 х 2. Графический метод решения игр 2 х n и m x 2. 53

Лекция 12. Сведение матричной игры к задаче линейного программирования. 58

Лекция 13. Основы теории систем массового обслуживания. Предмет теории массового обслуживания. 61

Лекция 14. Основы марковских процессов. Уравнения Колмогорова. 62

Лекция 15. Предельные вероятности состояний. Простейший поток событий. 67

Лекция 16. Модели систем массового обслуживания при пуассоновских потоках заявок. Модели систем массового обслуживания с отказами. 75

Лекция 17. Модель простейшей одноканальной системы массового обслуживания с очередями. 81

Лекция 18. Модель многоканальной системы массового обслуживания с очередями. 84

Список литературы.. 89


Лекция 1. Теория принятия решений. Основные понятия и определения

Человек наделён сознанием, существо свободное и обречено на выбор решений, стараясь сделать всё наилучшим образом. В наиболее общем смысле теория принятия оптимальных решений представляет собой совокупность математических и численных методов, ориентированных на нахождение наилучших вариантов из множества альтернатив и позволяющих избежать их полного перебора. Ввиду того, что размерность практических задач, как правило, достаточно велика, а расчеты в соответствии с алгоритмами оптимизации требуют значительных затрат времени, то методы принятия оптимальных решений главным образом ориентированы на реализацию их с помощью ЭВМ.

Практическая потребность общества в научных основах принятия решений возникла с развитием науки и техники только в XVIII веке Началом науки "Теория принятия решений" следует считать работу Жозефа Луи Лагранжа, смысл которой заключался в следующем: сколько земли должен брать на лопату землекоп, чтобы его сменная производительность была наибольшей. Оказалось, что утверждение "бери больше, кидай дальше" неверен. Бурный рост технического прогресса, особенно во время и после второй мировой войны, ставил все новые и новые задачи, для решения которых привлекались и разрабатывались новые научные методы. Можно выделить следующие научно-технические предпосылки становления "Теории принятия решений":

  • удорожание "цены ошибки". Чем сложнее, дороже, масштабнее планируемое мероприятие, тем менее допустимы в нем "волевые" решения и тем важнее становятся научные методы, позволяющие заранее оценить последствия каждого решения, заранее исключить недопустимые варианты и рекомендовать наиболее удачные;
  • ускорение научно-технической революции техники и технологии. Жизненный цикл технического изделия сократился настолько, что "опыт" не успевал накапливаться и требовалось применение более развитого математического аппарата в проектировании;
  • развитие ЭВМ. Размерность и сложность реальных инженерных задач не позволяло использовать аналитические метода.

Как часто это бывает, эта наука, с одной стороны, стала определенной ветвью других более общих наук (теория систем, системный анализ, кибернетика и т.д.), а с другой, стала синтезом определенных фундаментальных более частных наук (исследование операций, оптимизация и т.д.), создав при этом и собственную методологию.

Инженерное дело теснейшим образом связано с совокупностями объектов, которые принято называть сложными системами, которые характеризуются многочисленными и разнообразными по типу связями между отдельно существующими элементами системы и наличием у системы функции назначения, которой нет у составляющих ее частей. На первый взгляд каждая сложная система имеет уникальную организацию. Однако более детальное изучение способно выделить общее в системе команд ЭВМ, в процессах проектирования лесной машины, самолета и космического корабля.

В научно-технической литературе существует ряд термином, имеющих отношение к исследованию сложных систем.

Наиболее общий термин "теория систем" относится ко всевозможным аспектам исследования систем. Ее основными частями являются

  • системный анализ, который понимается как исследование проблемы принятия решения в сложной системе,
  • кибернетика, которая рассматривается как наука об управлении и преобразовании информации.

Здесь следует заметить, что понятие управления не совпадает с принятием решения. Условная граница между кибернетикой и системным анализом состоит в том, что первая изучает отдельные и строго формализованные процессы, а системный анализ - совокупность процессов и процедур.

Очень близкое к термину "системный анализ" понятие - "исследование операций", которое традиционно обозначает математическую дисциплину, охватывающую исследование математических моделей для выбора величин, оптимизирующих заданную математическую конструкцию (критерий). Системный анализ может сводиться к решению ряда задач исследования операций, но обладает свойствами, не охватываемыми этой дисциплиной. Однако в зарубежной литературе термин "исследование операций" не является чисто математическим и приближается к термину "системный анализ". Широкая опора системного анализа на исследование операций приводит к таким его математизированным разделам, как

  • постановка задач принятия решения;
  • описание множества альтернатив;
  • исследование многокритериальных задач;
  • методы решения задач оптимизации;
  • обработка экспертных оценок;
  • работа с макромоделями системы.

Системный анализ - наука, занимающаяся проблемой принятия решения в условиях анализа большого количества информации различной природы.

Из определения следует, что целью применения системного анализа к конкретной проблеме является повышение степени обоснованности принимаемого решения, расширение множества вариантов, среди которых производится выбор, с одновременным указанием способов отбрасывания заведомо уступающим другим.

В системном анализе выделяют

  • методологию;
  • аппаратную реализацию;
  • практические приложения.

Методологиявключает определения используемых понятий и принципы системного подхода.

Дадим основные определения системного анализа.

Элемент - некоторый объект (материальный, энергетический, информационный), который обладает рядом важных для нас свойств, но внутреннее строение (содержание) которого безотносительно к цели рассмотрения.

Связь - важный для целей рассмотрения обмен между элементами веществом, энергией, информацией.

Система - совокупность элементов, которая обладает следующими признаками:

  • связями, которые позволяют посредством переходов по ним от элемента к элементу соединить два любых элемента совокупности;
  • свойством, отличным от свойств отдельных элементов совокупности.

Практически любой объект с определенной точки зрения может быть рассмотрен как система. Вопрос состоит в том, насколько целесообразна такая точка зрения.

Большая система - система, которая включает значительное число однотипных элементов и однотипных связей. В качестве примера можно привести трубопровод. Элементами последнего будут участки между швами или опорами. Для расчетов на прочность по методу конечных элементов элементами системы считаются небольшие участки трубы, а связь имеет силовой (энергетический) характер - каждый элемент действует на соседние.

Сложная система - система, которая состоит из элементов разных типов и обладает разнородными связями между ними. В качестве примера можно привести ЭВМ, лесной трактор или судно.

Автоматизированная система - сложная система с определяющей ролью элементов двух типов:

  • в виде технических средств;
  • в виде действия человека.

Для сложной системы автоматизированный режим считается более предпочтительным, чем автоматический. Например, посадка самолета или захват дерева харвестерной головкой выполняется при участии человека, а автопилот или бортовой компьютер используется лишь на относительно простых операциях. Типична также ситуация, когда решение, выработанное техническими средствами, утверждается к исполнению человеком.

Структура системы - расчленение системы на группы элементов с указанием связей между ними, неизменное на все время рассмотрения и дающее представление о системе в целом. Указанное расчленение может иметь материальную, функциональную, алгоритмическую или другую основу. Пример материальной структуры - структурная схема сборного моста, которая состоит из отдельных, собираемых на месте секций и указывает только эти секции и порядок их соединения. Пример функциональной структуры - деление двигателя внутреннего сгорания на системы питания, смазки, охлаждения, передачи крутящего момента. Пример алгоритмической структуры - алгоритм программного средства, указывающего последовательность действий или инструкция, которая определяет действия при отыскании неисправности технического устройства.

Структура системы может быть охарактеризована по имеющимся в ней типам связей. Простейшими из них являются последовательное, параллельное соединение и обратная связь.

Декомпозиция - деление системы на части, удобное для каки







Последнее изменение этой страницы: 2016-08-26; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 35.172.216.157 (0.02 с.)