Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Усиление главных балок композитными материаламиСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Композитные материалы на строительном рынке России появились сравнительно недавно, в конце 90-х гг. XX в., за рубежом их применение известно с начала 70-х гг. XX в. Композитными материалами или фиброармированными пластиками называют стеклянные, арамидные, углеродные и другие волокна, объединенные полимерной матрицей. При усилении железобетонных конструкций композитные материалы применяют в виде ламинатов (пластин) или тканных полотен (холстов) различного плетения. В таблице 12.5 приведены основные физические, прочностные и деформативные характеристики волокон композитных материалов и стали арматуры класса AIII, на рисунке 12.22 изображена диаграмма деформирования волокон при растяжении совместно с диаграммой Прандтля для стали. Таблица 12. 5 – Характеристики волокон композитных материалов и стали
Рисунок 12.22- Диаграмма деформирования волок и стали при растяжении Как видно из таблицы 12.5 и рисунка 12.22, все волокна композитных материалов имеют высокое сопротивление осевому растяжению, более 2000 МПа, а модуль упругости варьируется в пределах от 62 до 760 ГПа [99]. Для сравнения, у рабочей арматуры класса АIII нормативное сопротивление при осевом растяжении составляет 390 МПа, модуль упругости 205 ГПа. Углеродные и арамидные волокна хорошо сопротивляются многим химическим воздействиям: щелочам, кислотам, хлоридам, сульфатам, нитратам и другим. При воздействии огня, стекловолокна сохраняют свою прочность до точки плавления (более 1000 °С), углеродные волокна окисляются на воздухе при температуре около 650 °С. Арамидные волокна не могут использоваться при температуре свыше 200 °С. Все типы волокон не поддерживают горение. В системах усиления из композитных материалов при воздействии высоких температур определяющим является поведение полимерной матрицы и полимерного клея, с помощью которых осуществляется объединение волокон и монтаж композита на поверхность усиливаемой конструкции. Полимерные клеи обеспечивают включение в совместную работу волок композитных материалов с усиливаемой конструкцией на восприятие нагрузок. Работоспособность большинства клеящих составов сохраняется от -50 до +100 °С [6, 77, 87, 94]. В таблице 12.5 приведены свойства полимера. На рисунке 12.23 изображен рулон ткани черного цвета из углеродных волокон длиной 50 м, шириной 200 мм совместно с емкостями полимерного клея (эпоксидная смола плюс отвердитель), необходимого для приклейки ткани к усиливаемой конструкции. На рисунке 12.24, в качестве примера, приведена конструкция железобетонного пролетного строения, усиленного композитными материалами автодорожного моста через реку Тишковка на 93 км автомобильной дороги Кукуштан-Чайковский в Осиновском районе Пермского края.
Рисунок 12.23- Композитный материал для усиления
Рисунок 12.24- Железобетонное пролетное строение автодорожного моста, усиленное: а) углепластиковыми ламинатами на действие изгибающего момента; б) тканью из углеродных волокон на действие поперечной силы К достоинствам технологии усиления композитными материалами по сравнению с металлом следует отнести: – малый собственный вес композитов; – лучшие прочностные и деформативные характеристики композитов по сравнению со сталью; – композиты не подвержены коррозии и не нуждаются в дополнительной возобновляемой защите; – высокая адгезия клеящих составов, с помощью которых осуществляется приклейка композитов к бетону, обеспечивает включение композита в совместную работу с усиливаемой конструкцией без необходимости обеспечения дополнительной анкеровки; – достаточно простые технологические процедуры при производстве работ по усилению; – возможность использования при усилении элементов со сложными геометрическими конфигурациями; – усиление конструкции композитом практически не изменяет ее геометрические размеры и визуально воспринимаемые очертания, что важно при использовании в стесненных условиях и при необходимости сохранения архитектурных показателей сооружения. Опыт анализа конструкций и технического состояния железобетонных пролетных строений автодорожных и железнодорожных мостов указывает на явную необходимость в повышения несущей способности эксплуатируемых пролетных строений. При этом, применение технологий усиления с использованием композитных материалов является наиболее эффективным способом, внедрение которого в практику мостостроения сдерживается из-за отсутствия необходимой нормативно-технической документации.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-12-30; просмотров: 719; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.147.48.226 (0.009 с.) |