Методика «усиления» при проведении КТ. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Методика «усиления» при проведении КТ.

Поиск

Для увеличения разрешающей способности КТ была предложена методика «усиления» изображения. Она основана на внутривенном введении рентгеноконтрастных препаратов, в результате которого происходит повышение денситометрической разницы между здоровой тканью и патологическим образованием вследствие их различного кровенаполнения. Увеличение контрастности может быть осуществлено введением в полостные органы газа. Методику «усиления» используют для дифференциальной диагностики злокачественных и доброкачественных образований, когда разница в их плотности отсутствует или незначительна, что не позволяет отграничить патологический очаг от здоровой ткани. Контрастирование также используется при динамических исследованиях для оценки характера и степени функциональных нарушений отдельных органов и систем. Наиболее часто «усиление» используют для выявления опухоли и метастазов в печени, почках и неорганных образованиях, где эффективность методики достигает 25 – 30%. Использование «усиления» необходимо для диагностики гемангиом в связи со специфичностью контрастирования ткани опухоли, что позволяет практически исключить необходимость ангиографического исследования. Методика «усиления» дает хорошие результаты также при диагностике патологических образований в головном мозге, средостении и органах малого таза. Методика «усиления» осуществляется перфузионным или инфузионным введением контрастного вещества, иногда контрастные препараты вводятся в близлежащие органы для создания искусственной контрастности, способствующей дифференциации патологических образований и соседних участков неповрежденной ткани и органов. При использовании методики перфузионного контрастирования препарат с концентрацией йода 60—70% вводится одномоментно из расчета 0,8—1,0 мл/кг массы тела в течение 10—20 с. Сканирование проводится до и после «усиления». Оптимальное время сканирования 10--20 с после введения препарата. При инфузионном «усилении» компьютерная томография проводится в течение капельного введения 100—200 мл 30% раствора верографина. Оптимальное время сканирования – 8 – 10 мин. При диагностических исследованиях отдельных органов, крупных сосудов и сердца используется болюсное внутривенное введение 30 – 40 мл 60% раствора верографина или урографина в локтевую вену в течение 10 – 12с. с помощью автоматического инъектора с одновременным сканированием. Для сканирования сердца применяется приставка «сериокард», специальная программа позволяет проводить динамическое исследование сердца синхронно с ЭКГ. Для динамического исследования сердца и крупных сосудов используется последовательное сканирование на разных уровнях томографирования с получением на каждом из них 2 – 3 срезов со скоростью 7 сканов в 1 мин. После достижения пика контрастирования и компьютерной обработки (сложения сканов) получают информацию о состоянии органов средостения. Для компьютерной ангиографии печени и других органов брюшной полости и малого таза используется болюсное внутривенное введение 20 – 30 мл 50% раствора урографина со скоростью 5 – 8 мл/с.
32 Открытие и определение ядерно-магнитного резонанса.

Ядерный магнитный резонанс (ЯМР) — резонансное поглощение или излучение электромагнитной энергии веществом, содержащим ядра с ненулевым спином во внешнем магнитном поле, на частоте ν (называемой частотой ЯМР), обусловленное переориентацией магнитных моментов ядер.

Явление ядерного магнитного резонанса было открыто в 1938 году Исааком Раби в молекулярных пучках, за что он был удостоен Нобелевской премии 1944 года. В 1946 году Феликс Блох и Эдвард Миллз Парселл получили ядерный магнитный резонанс в жидкостях и твердых телах (нобелевская премия 1952 года).

Одни и те же ядра атомов в различных окружениях в молекуле показывают различные сигналы ЯМР. Отличие такого сигнала ЯМР от сигнала стандартного вещества позволяет определить так называемый химический сдвиг, который обусловлен химическим строением изучаемого вещества. В методиках ЯМР есть много возможностей определять химическое строение веществ, конформации молекул, эффекты взаимного влияния, внутримолекулярные превращения.

33 Принцип магнитно-резонансной томографии.
Магнитно-резонансная томография (МРТ), как следует из названия, основаа на явлении ядерного магнитного резонанса (ЯМР). Суть этого явления в общем случае сводится к следующему: ядра химических элементов в твердом, жидком или газообразном веществе можно представить как быстро вращающиеся вокруг своей оси магниты. Если эти ядра-магниты поместить во внешнее магнитное поле, то оси вращения начнут прецессировать (т. е. вращаться вокруг направления силовой линии внешнего магнитного поля), причем скорость прецессии зависит от величины напряженности магнитного поля. Если теперь исследуемый образец облучить радиоволной, то при равенстве частоты радиоволны и частоты прецессии наступит резонансное поглощение энергии радиоволны "замагниченными" ядрами. После прекращения облучения образца ядра атомов будут переходить в первоначальное состояние (релаксировать), при этом энергия, накопленная при облучении, будет высвобождаться в виде электромагнитных колебаний, которые можно зарегистрировать с помощью специальной аппаратуры.

В медицинских томографах по ряду причин используется регистрация ЯМР на протонах — ядрах атомов водорода, входящих в состав молекулы воды. В силу того что используемый в МРТ метод чрезвычайно чувствителен даже к незначительным изменениям концентрации водорода, с его помощью удается не только надежно идентифицировать различные ткани, но и отличать нормальные ткани от опухолевых

 

34 Устройство и оборудование кабинетов МРТ.

Система для МРТ состоит из сильного магнита, создающего статическое магнитное поле. Магнит полый, в нем имеется туннель, в котором располагается пациент. Стол для пациента имеет автоматическую систему управления движением в продольном и вертикальном направлениях. Для радиоволнового возбуждения ядер водорода дополнительно устанавливают высокочастотную катушку, которая одновременно служит для приема сигнала релаксации. С помощью специальных градиентных катушек накладывается дополнительное магнитное поле, которое служит для кодирования МР-сигнал от пациента, в частности оно задает уровень и толщину выделяемого слоя. При воздействии радиочастотных импульсов на процессирующие в магнитном поле протоны происходят их резонансное возбуждение и поглощение энергии. При этом резонансная частота пропорциональна силе приложенного статического поля. После окончания импульса происходит релаксация протонов: они возвращаются в исходное положение, что сопровождается выделением энергии в виде МР-сигнала. Этот сигнал подается на ЭВМ для анализа. МР-установки включают в себя мощные высокопроизводительные компьютеры.
В зависимости от напряженности статического магнитного поля выделяют следующие категории МР-томографов: приборы с ультраслабым полем – ниже 0,02 Т, со слабым полем – между 0,1 и 0,5 Т, средним полем – между 0,5 и 1 Т, с сильным полем – свыше 1 Т. Аппараты с напряженностью менее 0,5 Т, как правило, имеют в основе резистентные магниты и имеют небольшие размеры, что позволяет разместить их примерно в таком же помещении, как обычный рентгеновский кабинет. Аппараты с полями 0.5 Τ и выше создаются на основе сверхпроводяших магнитов, работающих в условиях глубокого охлаждения жидким гелием. Добавим, что к размещению высокопольного МР-томографа в лечебном учреждении предъявляются очень строгие требования. Необходимы отдельные помещения, тщательно экранированные от внешних магнитных и радиочастотных полей. Обычно процедурная комната, где находится МР-томограф, заключена в металлическую сетчатую клетку (клетка Фарадея), поверх которой нанесен отделочный материал (пола, потолка, стен).

 

35 Характеристика МР-томограммы.
Характер Μ Р-изображений определяется тремя факторами: плотностью протонов (т.е. концентрацией ядер водорода), временем релаксации Τι (спин-решетчатой) и поперечной релаксации Τι (спин-спиновой). При этом основной вклад в создание изображения вносит анализ времени релаксации, а не протонной плотности. Так, серое и белое вещества головного мозга по концентрации воды различаются всего на 10 %, в то время как по продолжительности релаксации протонов в них — в 1,5 раза. Существует несколько способов получения МР-томограмм, различающихся порядком и характером генерации радиочастотных импульсов, методами компьютерного анализа МР-сигналов. Наибольшее распространение получили два способа. При использовании одного из них анализируют главным образом время релаксации Τι (Τ,-взвешенное изображение). Различные ткани (серое и белое вещества головного мозга, цереброспинальная жидкость, опухолевая ткань, хрящ, мышцы и т.д.) имеют в своем составе протоны с разным временем релаксации Т,. От продолжительности Т, зависит величина МР-сигнала: чем короче Τι, тем сильнее МР-сигнал и светлее данное место изображения на дисплее. Жировая ткань на МР-томограммах белая, менее светлое изображение дают головной и спинной мозг, плотные внутренние органы, сосудистые стенки и мышцы. Воздух, кости, кальцификаты практически не дают МР-сигнала, поэтому их (ШораженИя"черного цвета. Т, мозговой ткани также неоднородное: белого и серого вещества 'шчо""разное. Τι опухолевой ткани отличается от Τι одноименной нормальной ткани. Указанные различия во времени релаксации Т, создают предпосылки для визуализации нормальных и измененных тканей на МР-томограммах. При другом способе МРТ интенсивность ответного сигнала зависит от продолжительности Т; (Т2-взвешенное изображение): чем короче Тг, тем слабее сигнал и, следовательно, ниже яркость свечения экрана дисплея При МРТ можно применять искусственное контрастирование тканей. С этой целью используют химические вещества, обладающие магнитными свойствами и содержащие ядра с нечетным числом протонов и нейтронов, например соединения фтора, или же парамагнетики, которые изменяют время релаксации воды и тем самым усиливают контрастность изображения на МР-томограммах. Одним из наиболее распространенных контрастных веществ, используемых в МРТ, является соединение гадолиния ~ Gd~DTPA.



Поделиться:


Последнее изменение этой страницы: 2016-08-06; просмотров: 789; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.12.151.11 (0.009 с.)