Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Эмпирическая функция распределенияСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Методы обработки ЭД опираются на базовые понятия теории вероятностей и математической статистики. К их числу относятся понятия генеральной совокупности, выборки, эмпирической функции распределения. Под генеральной совокупностью понимают все возможные значения параметра, которые могут быть зарегистрированы в ходе неограниченного по времени наблюдения за объектом. Такая совокупность состоит из бесконечного множества элементов. В результате наблюдения за объектом формируется ограниченная по объему совокупность значений параметра x1, x2, …, xn. С формальной точки зрения такие данные представляют собой выборку из генеральной совокупности. Наблюдаемые значения xi называют вариантами, а их количество – объемом выборки n. Для того чтобы по результатам наблюдения можно было делать какие-либо выводы, выборка должна быть репрезентативной (представительной), т. е. правильно представлять пропорции генеральной совокупности. Это требование выполняется, если объем выборки достаточно велик, а каждый элемент генеральной совокупности имеет одинаковую вероятность попасть в выборку. Пусть в полученной выборке значение x1 параметра наблюдалось n1 раз, значение x2 – n2 раз, значение xk – nk раз, n1 + n2 + … + nk= n. Совокупность значений, записанных в порядке их возрастания, называют вариационным рядом, величины ni – частотами, а их отношения к объему выборки ni = ni / n – относительными частотами (частостями). Очевидно, что сумма относительных частот равна единице. Другой формой вариационного ряда является ряд накопленных частот, называемый кумулятивным рядом. Под распределением понимают соответствие между наблюдаемыми вариантами и их частотами или частостями. Пусть nx – количество наблюдений, при которых случайные значения параметра Х меньше x. Частость события X<x равна nx / n. Это отношение является функцией от x и от объема выборки: Fn(x)= nx / n. Величина Fn(x) обладает всеми свойствами функции распределения: · Fn(x) – неубывающая функция, ее значения принадлежат отрезку [0 – 1]; · если x1 – наименьшее значение параметра, а xk – наибольшее, то Fп(x)=0, когда x<=x1, и Fп(x)= 1, когда x>xk. Функция Fп(x) определяется по ЭД, поэтому ее называют эмпирической функцией распределения. В отличие от эмпирической функции Fn(x) функцию распределения F(x) генеральной совокупности называют теоретической функцией распределения, она характеризует не частость, а вероятность события X<x. Из теоремы Бернулли вытекает, что частость Fn(x) стремится по вероятности к вероятности F(x) при неограниченном увеличении n. Следовательно, при большом объеме наблюдений теоретическую функцию распределения F(x) можно заменить эмпирической функцией Fn(x). Основные свойства функции Fn (x). 1. 0 Fn (x) 1. 2. Fn (x) - неубывающая ступенчатая функция. 3. F n(x) = 0, x x1. 4. F n(x) = 1, x > xn.
Пример 1.1 Задана выборка случайной величины X: {4 3 3 5 2 4 3 4 4 5}. Построить график эмпирической функции распределения F n(x). Решение. Вариационный ряд случайной величины имеет вид {2 3 3 3 4 4 4 4 5 5}. Затем выделяем полуинтервалы (-,2], (2,3], (3,4], (4,5], (5,+]. На полуинтервале (-,2] Fn (x)=0/10=0. При 2< x 3 Fn (x)=1/10=0,1. Аналогично определяем значения Fn (x) на остальных полуинтервалах: . График функции F n(x)приведен на рис. 1.1. Замечание. В каждой точке оси x, соответствующим значениям xi функция F n(x) имеет скачок. В точке разрыва F n(x) непрерывна слева и принимает значение, выделенное знаком . При большом объеме выборки (понятие «большой объем» зависит от целей и методов обработки, в данном случае будем считать п большим, если n >40) в целях удобства обработки и хранения сведений прибегают к группированию ЭД в интервалы. Количество интервалов следует выбрать так, чтобы в необходимой мере отразилось разнообразие значений параметра в совокупности и в то же время закономерность распределения не искажалась случайными колебаниями частот по отдельным разрядам. Существуют нестрогие рекомендации по выбору количества M и размера h таких интервалов, в частности параметр M рекомендуется выбирать с помощью следующих соотношений: где int(x) - целая часть числа x. Желательно, чтобы n без остатка делилось на M. Графически статистический ряд отображают в виде гистограммы, полигона и ступенчатой линии. Часто гистограмму представляют как фигуру, состоящую из прямоугольников, основаниями которых служат интервалы длиною h, а высоты равны υi /(nh). Такую гистограмму можно интерпретировать как графическое представление эмпирической функции плотности распределения fn(x), в ней суммарная площадь всех прямоугольников составит единицу. Гистограмма помогает подобрать вид теоретической функции распределения для аппроксимации ЭД. Полигоном называют ломаную линию, отрезки которой соединяют точки с координатами по оси абсцисс, равными серединам интервалов, а по оси ординат – соответствующим частостям. Порядок построения гистограммы следующий. 1. Построить вариационный ряд, т.е. расположить выборочные значения в порядке возрастания: . 2. Вся область возможных значений разбивается на M непересекающихся и примыкающих друг к другу интервалов. Ai, Bi - соответственно левая и правая границы i -го интервала (Ai +1= Bi); hi = Bi - Ai - длина i -го интервала; i - количество чисел в выборке, попадающих в i -тый интервал. При использовании равноинтервального метода построения гистограммы параметры Ai, Bi, hi вычисляются следующим образом: Если при подсчете значений какое-то число в выборке точно совпадает с границей между интервалами, то необходимо в счетчик обоих интервалов прибавить по 0,5. В случае применения равновероятностного метода границы Ai, Bi выбираются таким образом, чтобы в каждый интервал попадало одинаковое количество выборочных значений: i = = n / M. В этом случае 3. Вычисляется средняя плотность вероятности для каждого интервала по формуле 4. На графике провести две оси: x и f *(x). 5. На оси x отмечаются границы всех интервалов. 6. На каждом интервале строится прямоугольник с основанием hi и высотой Полученная при этом ступенчатая линия называется гистограммой, график которой приблизительно выглядит так, как показано на рис. 1.2. Замечания. 1. Суммарная площадь всех прямоугольников равна единице. 2. В равновероятностной гистограмме площади всех прямоугольников одинаковы. По виду гистограммы можно судить о законе распределения случайной величины. Достоинства использования гистограммы: простота применения, наглядность. Пример 1.2. Вариационный ряд случайной величины x имеет вид: Построить гистограмму равноинтервальным и равновероятностным методами. Решение. Объем выборки равен 100. Количество интервалов определяем так: Для равноинтервального метода построения параметры Ai, Bi, i, hi, приведены в табл. 1.1. Таблица 1.1.
Ниже приведены интервальная таблица и график гистограммы для равновероятностного метода. Таблица 1.2
Рис. 5.4 Равновероятностная гистограмма
Рассмотренные представления ЭД являются исходными для последующей обработки и вычисления различных параметров.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-09-19; просмотров: 880; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.98.153 (0.008 с.) |