Числовые характеристики распределения Пуассона. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Числовые характеристики распределения Пуассона.



Математическое ожидание равно дисперсии и равно параметру распределения а: М(Х)= а, D(X)= а.

 


КОММЕНТАРИИ К ЗАДАЧЕ №4

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ НЕПРЕРЫВНОГО ТИПА.

 

Если возможные значения случайной величины сплошь заполняют некоторый промежуток (a,b) Ì R (быть может, и всюось), то табличный способ задания случайной величины непригоден. Такая случайная величина называется случайной величиной непрерывного типа. Ее функция распределения F(x) будет непрерывна. Напомним, что F(- ¥) = 0, F(+ ¥) = 1, F(x) - монотонная неубывающая функция. Производная такой функции F(x) будет функцией неотрицательной. Она называется плотностью распределения вероятностей или дифференциальной функцией распределения вероятностей. Ее обозначение .

Часто по условию задачи задают именно плотность распределения, зная которую можно вычислить и (интегральную) функцию распределения (по формуле Ньютона - Лейбница):

F(x) = F(x) - F(- ¥) =

Заметим, что f(x) - не обязательно непрерывная функция, она допускает в отдельных точках разрывы 1-го рода.

Итак, f(x) - неотрицательная кусочно-непрерывная функция, причем, согласно одному из свойств F(x),

F(+ ¥) = = 1

Последнее равенство, называемое условием нормировки f(x), показывает, что f(x) - не любая неотрицательная функция: площадь между графиком плотности распределения и осью абсцисс должна быть равна 1.(Для дискретной случайной величины условием нормировки являлось равенство ).

Для непрерывных случайных величин справедливы равенства

F(b) - F(a) = P(a £ X < b) = P(a < X < b) = P(a < X £ b) = P(a £ X £ b) = .

М(Х) и D(X) определяются формулами

M(X) = , D(X) = .

Вычислительная формула для D(X):

D(X) = M(X2) - (M(X))2 = - (M(X))2.

 

НОРМАЛЬНЫЙ ЗАКОН РАСПРЕДЕЛЕНИЯ И ЕГО

ХАРАКТЕРИСТИКИ

 

Нормальный (гауссовский) закон распределения задается плотностью распределения по формуле

, - ¥ < x < +¥

Числа а Î R и s > 0 называются параметрами нормального закона. Нормальный закон с такими параметрами обозначается N(a,s).

При а = 0 функция f(x) четная (f(-x) = f(x)), ее график симметричен относительно оси OY, и поэтому среднее значение М(Х) = 0. График f(x) для закона N(a,s) получается из графика f(x) для N(0,s) сдвигом на а единиц вправо (это известно из курса средней школы), поэтому в общем случае М(Х) = а для нормального закона. Дисперсия же вычисляется по формуле D(X) =s2.

 

Пример. Случайная величина Х распределена по нормальному закону с плотностью вероятности

Найти А, М (Х), D(X), P(-3<X<3).

Т. к. , то

Показатель экспоненты приравняем к , откуда а = 2, s = 1. Числовой коэффициент должен быть равен А, следовательно,

, M (X) = a = 2, D(X) = s 2 = 1.

P (-3 < X < 3) = F(3) - F(-3) = =

Этот интеграл не вычисляется в элементарных функциях, его численное значение можно найти по таблицам.

В большинстве учебников имеются таблицы для вычисления функций

Ф(х) = или Ф1(х) = = + Ф(х)

Ф(х) - нечетная функция, т.е. Ф(-х) = - Ф(х). В общем случае

Р(x1 < X < x2) = ,

где а и s - параметры нормального закона. Следовательно, для данного примера

P(|X| < 3) = Ф1(1) - Ф1(-5) = Ф(1) - Ф(-5) = Ф(1) + Ф(5) =

= 0,3413 + 0,5 = 0,8413.

 

ДРУГИЕ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ НЕПРЕРЫВНЫХ

СЛУЧАЙНЫХ ВЕЛИЧИН.

 

Кроме нормального закона есть и другие случайные величины, часто встречающиеся в приложениях. Приведем некоторые из них.

Для равномерного закона плотность вероятности и функция распределения задаются формулами

, ,

а числовые характеристики М(Х)= , D(X)= .

Для показательного закона плотность вероятности и функция распределения задаются формулами

, ,

а числовые характеристики М(Х)= 1/a, D(X)= 1/a2.

Эти формулы можно использовать при решении задач.

 


МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ ЗАДАНИЯ №5

Математическая статиcтика изучает массовые явления и процессы, ставя целью получение выводов по данным наблюдений за ними. В результате появляются утверждения об общих характеристиках таких явлений в предположении постоянства начальных условий явления. Теоретической основой математической статистики является теория вероятностей.

Поскольку число наблюдений конечно, их результаты можно записать в таблицу аналогично дискретной случайной величине, только в нижней строке не вероятности, а частоты тех или иных значений, а чаще – диапазонов. При этом при анализе такой таблицы нередко возникает предположение, что данная величина распределена по одному из известных непрерывных законов (см. комментарии к задаче № 4), чаще всего – нормальному (гауссовскому).

Типовой пример

Получены статистические данные (N=500) зависимости результатов измерения роста студентов (Х) от окружности груди (Y). Измерения проводились с точностью до 1 см.

Таблица 1 «Статистические данные типового примера».

N                        
X                        
Y                        

…………..

Конец таблицы 1

N                        
X                        
Y                        

 

Требуется:

1 часть.

1) произвести выборку из 200 значений;

2) построить эмпирическую функцию распределения, полигон, гистограмму для случайной величины Х;

3) построить точечные и интервальные оценки для мат. ожидания и дисперсии генеральной совокупности Х;

4) сделать статистическую проверку гипотезы о законе распределения случайной величины Х;

часть 2.

1) нанести на координатную плоскость данные выборки (x;y) и по виду корреляционного облака подобрать вид функции регрессии;

2) составить корреляционную таблицу по сгруппированным данным;

3) вычислить коэффициент корреляции;

4) получить уравнение регрессии;

 

Решение.

1) Произведём из генеральной совокупности N =500 выборку n =200 значений. Для этого воспользуемся таблицей случайных чисел (Приложение А). Выберите столбец, номер которого соответствует месяцу Вашего рождения. В этом столбце отсчитайте порядковый номер даты дня рождения. В полученном случайном числе определите номера ещё трёх столбцов. Для данного примера выбрана дата 31 декабря. В 12 столбце определили 31 номер случайного числа. Это число 0436. Значит выбранными будут столбцы №12;4;13;16. (№12 – месяц Вашего рождения, №4 – первая или вторая цифра в случайном числе, которая не использовалась, №13 – третья цифра в случайном числе +10, №16 – четвёртая цифра в случайном числе +10). Если цифры повторяются, то нужно взять со3седние номера. Например, случайное число во втором столбце - 4422. Нужно выбрать номера 2,4,12,13.

Для осуществления выборки берутся последние три цифры в случайном числе, которые определяют порядковый номер выборочного значения. Если в выборке встретился номер, которого нет в генеральной совокупности, то необходимо вычислить разность между этим числом и 500. Если полученный номер уже выбрали, то необходимо выбрать следующий за ним номер.

Для представленного примера получилась выборка:

 

Таблица 2 «Выборочные данные X и Y»

N                        
X                        
Y                        

 

N                        
X                        
Y                        

 

N                        
X                        
Y                        

 

N                        
X                        
Y                        

 

N                        
X                        
Y                        

 

N                        
X                        
Y                        

 

 

N                        
X                        
Y                        

 

N                        
X                        
Y                        

 

N                        
X                        
Y                        

 

N                        
X                        
Y                        

 

N                        
X                        
Y                        

 

N                        
X                        
Y                        

 

N                        
X                        
Y                        

 

N                        
X                        
Y                        

 

N                        
X                        
Y                        

 

N                        
X                        
Y                        

 

N                
X                
Y                

 

Составим ранжированный (по увеличению) ряд для случайной величины Х.

Таблица 3 «Ранжированный ряд случайной величины Х»

X                        
Y                        

 

X                        
Y                        

 

X                        
Y                        

 

X                        
Y                        

 

X                        
Y                        

 

X                        
Y                        

 

X                        
Y                        

 

X                        
Y                        

 

X                        
Y                        

 

X                        
Y                        

 

X                        
Y                        

 

X                        
Y                        

 

X                        
Y                        

 

X                        
Y                        

 

X                        
Y                        

 

X                        
Y                        

 

X                  
Y                  

Cоставим новую таблицу, в которой отразим частоты появления случайных величин и относительные частоты .

 

 

Таблица 4 «Дискретный вариационный ряд»

i                        
                       
                       

 

i                        
                       
                       

 

i                      
                     
                     

 

В данном примере случайные величины сплошь заполняют промежуток (148;190). Число возможных значений велико. Их нельзя представить в виде случайных величин, принимающих отдельные, изолированные значения, тем самым отделить одно возможное значение от другого промежутком, не содержащим возможных значений случайной величины. Поэтому для построения вариационного ряда будем использовать интервальный ряд распределения. Весь возможный интервал варьирования разобьём на конечное число интервалов и подсчитаем частоту попадания значений величины в каждый интервал. Минимальное и максимальное значения случайной величины: Тогда интервал варьирования R («размах») будет равен R= Длину интервала рассчитывают по формуле:

(1)

При этом значение признака, находящегося на границе интервалов относят к правой границе интервала.

На практике считают, что правильно составленный ряд распределения содержит от 6 до 15 частичных интервалов. Часто интервальный вариационный ряд заменяют дискретным вариационным рядом, выбирая средние значения интервала (таблица №7).

Для данного примера , округлим до 3, т.е. размер интервала h =3, а число интервалов будет равно 14. Соответствующий интервальный вариационный ряд приведён в таблице №5.

 

Таблица 5 «Интервальный вариационный ряд»

Индекс интервала i Число покупателей (интервалы) Частота Относительная частота
  148-151   1/200
  151-154    
  154-157   5/200
  157-160   7/200
  160-163   21/200
  163-166   38/200
  166-169   39/200
  169-172   38/200
  172-175   21/200
  175-178   15/200
  178-181   8/200
  181-184   3/200
  184-187   3/200
  187-190   1/200

=1

 

2) После составления вариационного ряда необходимо построить функцию распределения выборки или эмпирическую функцию F*(x)= , то есть функцию найденную опытным путём. Здесь – относительная частота события Х< х, n - общее число значений.

Эмпирическое распределение можно изобразить в виде полигона, гистограммы или ступенчатой кривой.

Построим выборочную функцию распределения. Очевидно, что для функция так как . На концах интервалов значения функции рассчитаем в виде «нарастающей относительной частоты» (таблица 6).

Таблица 6 «Расчёт эмпирической функции распределения»

Индекс интервала i
  1/200
  1/200
  1/200+5/200=6/200
  6/200+7/200=13/200
  13/200+21/200=34/200
  34/200+38/200=72/200
  72/200+39/200=111/200
  111/200+38/200=149/200
  149/200+21/200=170/200
  170/200+15/200=185/200
  185/200+8/200=193/200
  193/200+3/200=196/200
  196/200+3/200=199/200
  199/200+1/200=200/200

 

 

Табличные значения не полностью определяют выборочную функцию распределения непрерывной случайной величины, поэтому при графическом изображении её доопределяют, соединив точки графика, соответствующие концам интервала, отрезками прямой (рис.1).

Полученные данные, представленные в виде вариационного ряда, изобразим графически в виде ломаной линии (полигона), связывающей на плоскости точки с координатами , где - среднее значение интервала , а - относительная частота.(таблица 7 и рис.2). На этом же рисунке отобразим пунктирной линией выравнивающие (теоретические) частоты.

Таблица 7 “Дискретный вариационный ряд”

Номер интервала i Среднее значение интервала Относительная частота Выборочная оценка плотности вероятности
  149,5 0,005 0,002
  152,5    
  155,5 0,025 0,008
  158,5 0,035 0,012
  161,5 0,105 0,035
  164,5 0,19 0,063
  167,5 0,195 0,065
  170,5 0,19 0,063
  173,5 0,105 0,035
  176,5 0,075 0,025
  179,5 0,04 0,013
  182,5 0,015 0,005
  185,5 0,015 0,005
  188,5 0,005 0,002

 

 
 

Рис.1

 
 

Рис.2

На основании полученных выборочных данных необходимо сделать предположение, что изучаемая величина распределена по некоторому определённому закону. Для того чтобы проверить, согласуется ли это предположение с данными наблюдений, вычисляют частоты полученных в наблюдениях значений, т.е. находят теоретически сколько раз величина Х должна была принять каждое из наблюдавшихся значений, если она распределена по предполагаемому закону. Для этого находят выравнивающие (теоретические) частоты по формуле:

(2)

где n – число испытаний,

- вероятность наблюдаемого значения , вычисленная при допущении, что Х имеет предполагаемое распределение.

Эмпирические (полученные из таблицы) и выравнивающие частоты сравнивают, и при небольшом расхождении данных делают заключение о выбранном законе распределения.

Предположим, что случайная величина Х распределена нормально (см. комментарии к задаче № 4). В этом случае выравнивающие частоты находят по формуле:

(3)

где n -число испытаний,

h -длина частичного интервала,

-выборочное среднее квадратичное отклонение,

( - середина i – го частичного интервала)

– функция Лапласа (4)

Результаты вычислений отобразим в таблице №8.

Сравнение графиков (рис.2) наглядно показывает близость выравнивающих частот к наблюдавшимся и подтверждает правильность допущения о том, что обследуемый признак распределён нормально.

 

Таблица 8 «Расчёт выравнивающих частот»

   
149,5 152,5 155,5 158,5 161,5 164,5 167,5 170,5 173,5 176,5 179,5 182,5 185,5 188,5 -19,5 -16,5 -13,5 -10,5 -7,05 -4,05 -1,05 1,95 4,95 7,95 10,95 13,95 16,95 19,95 -3 -2,53 -2,06 -1,59 -1,11 -0,64 -0,17 0,31 0,78 1,25 1,73 2,2 2,67 3,15 0,004 0,02 0,048 0,11 0,22 0,33 0,396 0,38 0,3 0,18 0,09 0,04 0,011 0,003 0,42 1,55 4,54 10,68 20,37 31,0 37,48 36,0 28,0 17,34 8,44 3,37 1,06 0,26   0,05 0,01 0,025 0,055 0,1 0,155 0,185 0,18 0,14 0,085 0,04 0,015 0,005

Интервальный вариационный ряд графически изобразим в виде гистограммы (рис.3). На оси Х отложим интервалы длиной h =3, а на оси Y значения ,расчёт которых представлен в таблице №7. Площадь под гистограммой равна сумме всех относительных частот, т.е. единице.

Графическое изображение вариационных рядов в виде полигона и гистограммы позволяет получать первоначальное представление о закономерностях, имеющих место в совокупности наблюдений.


Рис.3

 

3) Найдём числовые характеристики вариационного ряда, используя таблицу №4.

Выборочная средняя ():

или , (5)

где - частоты,

а -объём выборки. Выборочная средняя является оценкой математического ожидания (среднего значения теоретического закона распределения).

В некоторых случаях удобнее рассчитать с помощью условных вариант. В нашем случае варианты - большие числа, поэтому используем разность:

(6)

где С – произвольно выбранное число (ложный нуль). В этом случае

. (7)

Для изменения значения варианты можно ввести также условные варианты путём использования масштабного множителя:

, (8)

где (b выбирается положительным или отрицательным числом).

. Здесь С – середина 8-го интервала.

Выборочная дисперсия ():

(9)



Поделиться:


Последнее изменение этой страницы: 2016-09-19; просмотров: 307; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.116.42.208 (0.117 с.)