![]() Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву ![]() Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Если значение центрированной и нормированной величиныСодержание книги
Поиск на нашем сайте
(yik – m1* (rik))/s(rik) превышает значение квантили уровня 1– a /2 нормального распределения стандартизованной величины, то нулевая гипотеза отвергается. Таким образом, постановка задачи линейного корреляционного анализа формулируется в следующем виде. Имеется матрица наблюдений вида (6.1). Необходимо определить оценки коэффициентов корреляции для всех или только для заданных пар параметров и оценить их значимость. Незначимые оценки приравниваются к нулю. Допущения: · выборка имеет достаточный объем. Понятие достаточного объема зависит от целей анализа, требуемой точности и надежности оценки коэффициентов корреляции, от количества факторов. Минимально допустимым считается объем, когда количество наблюдений не менее чем в 5–6 раз превосходит количество факторов; · выборки по каждому фактору являются однородными. Это допущение обеспечивает несмещенную оценку средних величин; · матрица наблюдений не содержит пропусков. Если необходима проверка значимости оценки коэффициента корреляции, то требуется соблюдение дополнительного условия – распределение вариант должно подчиняться нормальному закону. Задача анализа решается в несколько этапов: · проводится стандартизация исходной матрицы; · вычисляются парные оценки коэффициентов корреляции; · проверяется значимость оценок коэффициентов корреляции, незначимые оценки приравниваются к нулю. По результатам проверки делается вывод о наличии связей между вариантами (факторами). Пример 6.1. Результаты наблюдений за характеристиками канала представлены в табл. 6.1.
Таблица 6.1
Необходимо определить наличие линейных корреляционных связей между пропускной способностью и остальными факторами. Предполагается, что выборки по всем вариантам подчиняются нормальному закону. Проверку гипотезы о значимости оценок коэффициентов корреляции произвести с уровнем значимости a, равным 0,1.
Решение. Стандартизация исходной матрицы начинается с вычисления выборочной средней m1*, несмещенной оценки дисперсии μ2* и среднеквадратического отклонения S по каждой варианте, табл.6.2. Таблица 7.2
В результате перехода к величинам
Таблица 6.3
Оценки коэффициентов корреляции
представлены в табл. 6.4. В этой же таблице приведены значения статистик критерия
Таблица 6.4
Критическое значение tкр (n–2; a) = tкр (13; 0,1) = 1,77. Статистика критерия больше критического значения только для r12. Это означает, что только для указанного коэффициента оценка значима (коэффициент корреляции генеральной совокупности не равен нулю), а остальные коэффициенты следует признать равными нулю. Корреляционная зависимость не обязательно устанавливается только для двух величин, с ее помощью можно анализировать связи между несколькими вариантами (множественная корреляция). А кроме линейной существуют и другие виды корреляции.
Регрессионный анализ
Постановка задачи
Одной из типовых задач обработки многомерных ЭД является определение количественной зависимости показателей качества объекта от значений его параметров и характеристик внешней среды. Примером такой постановки задачи является установление зависимости между временем обработки запросов к базе данных и интенсивностью входного потока. Время обработки зависит от многих факторов, в том числе от размещения искомой информации на внешних носителях, сложности запроса. Следовательно, время обработки конкретного запроса можно считать случайной величиной. Но вместе с тем, при увеличении интенсивности потока запросов следует ожидать возрастания его среднего значения, т.е. считать, что время обработки и интенсивность потока запросов связаны корреляционной зависимостью.
Постановка задачи регрессионного анализа формулируется следующим образом. Имеется совокупность результатов наблюдений вида (6.1). В этой совокупности один столбец соответствует показателю, для которого необходимо установить функциональную зависимость с параметрами объекта и среды, представленными остальными столбцами. Будем обозначать показатель через y* и считать, что ему соответствует первый столбец матрицы наблюдений. Остальные т –1 (m > 1) столбцов соответствуют параметрам (факторам) х2, х3, …, хт. Требуется: установить количественную взаимосвязь между показателем и факторами. В таком случае задача регрессионного анализа понимается как задача выявления такой функциональной зависимости y* = f(x2, x3, …, xт), которая наилучшим образом описывает имеющиеся экспериментальные данные. Допущения: · количество наблюдений достаточно для проявления статистических закономерностей относительно факторов и их взаимосвязей; · обрабатываемые ЭД содержат некоторые ошибки (помехи), обусловленные погрешностями измерений, воздействием неучтенных случайных факторов; · матрица результатов наблюдений является единственной информацией об изучаемом объекте, имеющейся в распоряжении перед началом исследования. Функция f(x2, x3, …, xт), описывающая зависимость показателя от параметров, называется уравнением (функцией) регрессии. Термин "регрессия" (regression (лат.) – отступление, возврат к чему-либо) связан со спецификой одной из конкретных задач, решенных на стадии становления метода. Его ввел английский статистик Ф. Гальтон. Он исследовал влияние роста родителей и более отдаленных предков на рост детей. По его модели рост ребенка определяется наполовину родителями, на четверть – дедом с бабкой, на одну восьмую прадедом и прабабкой и т.д. Другими словами, такая модель характеризует движение назад по генеалогическому дереву. Ф. Гальтон назвал это явление регрессией как противоположное движению вперед – прогрессу. В настоящее время термин "регрессия" применяется в более широком плане – для описания любой статистической связи между случайными величинами. Решение задачи регрессионного анализа целесообразно разбить на несколько этапов: · предварительная обработка ЭД; · выбор вида уравнений регрессии; · вычисление коэффициентов уравнения регрессии; · проверка адекватности построенной функции результатам наблюдений. Предварительная обработка включает стандартизацию матрицы ЭД, расчет коэффициентов корреляции, проверку их значимости и исключение из рассмотрения незначимых параметров (эти преобразования были рассмотрены в рамках корреляционного анализа). В результате преобразований будут получены стандартизованная матрица наблюдений U (через y будем обозначать стандартизованную величину y*) и корреляционная матрица r.
Стандартизованной матрице U можно сопоставить одну из следующих геометрических интерпретаций: · в т -мерном пространстве оси соответствуют отдельным параметрам и показателю. Каждая строка матрицы представляет вектор в этом пространстве, а вся матрица – совокупность п векторов в пространстве параметров; · в п -мерном пространстве оси соответствуют результатам отдельных наблюдений. Каждый столбец матрицы – вектор в пространстве наблюдений. Все вектора в этом пространстве имеют одинаковую длину, равную В корреляционной матрице особую роль играют элементы левого столбца – они характеризуют наличие или отсутствие линейной зависимости между соответствующим параметром ui (i =2, 3, …, т) и показателем объекта y. Проверка значимости позволяет выявить такие параметры, которые следует исключить из рассмотрения при формировании линейной функциональной зависимости, и тем самым упростить последующую обработку.
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-09-19; просмотров: 376; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.188.30.161 (0.011 с.) |