Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
На практике используется несколько подходов к определению объема выборки для получения статистически значимого результата.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
. Обратим внимание на самые простые из них. Первый из них называется произвольным подходом и основан он на применении «правила большого пальца». Например, бездоказательно принимается, что для получения точных результатов выборка должна составлять 5 % от совокупности. Данный подход простой и доступный в исполнении, не позволяет получать точные результаты. Его достоинством является относительная дешевизна затрат. В соответствии со вторым подходом объем выборки может быть установлен исходя из заранее оговоренных условий. Заказчик маркетингового исследования, например, знает, что при изучении общественного мнения выборка обычно составляет 1000 – 1200 человек, поэтому он рекомендует исследователю придерживаться данной цифры. Третий подход означает, что в некоторых случаях главным аргументом при определении объема выборки может быть стоимость проведения опроса. Хотя при этом ценность и достоверность получаемой информации не принимается в расчет. В случае четвертого подхода объем выборки определяется на основе статистического анализа. Данный подход предполагает определение минимального объема выборки с учетом требований к надежности и достоверности получаемых результатов. Пятый подход считается наиболее теоретически обоснованным и правильным подходом в определении объема выборки. Он основан на расчете доверительного интервала. Доверительный интервал – это диапазон, крайние точки которого характеризуют процент определенных ответов на какой-то вопрос. Данное понятие тесто связано с понятием «среднее квадратичное отклонение получаемого признака в генеральной совокупности». Чем оно больше, тем шире должен быть доверительный интервал, чтобы включить в свой состав, например 9,5 % ответов. Из свойств нормальной кривой распределения вытекает, что конечные точки доверительного интервала, равного к примеру 9,5 % определяются как произведение: 1,96 (нормированное отклонение) и среднего квадратичного отклонения. Числа 1,96 и 2,58 (для 99 % доверительного интервала) обозначаются как z. Существуют таблицы «Значение интеграла вероятности», которые дают возможность определить величины z для различных доверительных интервалов. Доверительный интервал равный 95% или 99% является стандартным при проведении маркетинговых исследований. Например, проведено исследование числа визитов автовладельцев в сервисные мастерские за год. Доверительный интервал для среднего числа визитов был рассчитан равным 5 – 7 визитам при 99 % уровне доверительности. Это означает, что если появится возможность, провести независимо 100 раз выборочные исследования, то для 99 выборочных исследований среднее значение числа визитов попадут в диапазон от 5 до 7 визитов, Если сказать иначе, то 99 % автовладельцев попадут в доверительный интервал. Допустим, было проведено исследование до 50 независимых выборок. Средние оценки для этих выборок образовали нормальную кривую распределения, которое называется выборочным распределением. Средняя оценка для совокупности в целом равна средней оценке кривой распределения. Понятие «выборочное распределение» рассматривается также в качестве одного из базовых понятий теоретической концепции, лежащее в основе определения V выборки. Естественно ни одна компания не в состоянии сформировать 10, 20, 50 независимых выборок. Обычно используется только одна выборка. Математическая статистика позволяет получить некую информацию о выборочном распределении, владея точными данными о вариации единственной выборки. Индикатором степени отличия оценки, истинной для совокупности в целом, которая ожидается для типичной выборки, является средне квадратическая ошибка. К примеру, исследуется мнение потребителей о новом товаре и заказчик данного исследования указал, что его устроит точность полученных результатов, равная плюс минус 5%. Предположим, что 30 % членов выборки высказались за новый продукт. Это означает, что диапазон возможных оценок для всей совокупности составляет 25 – 35 %. Причем, чем больше объем выборки, тем меньше ошибка. Высокое значение вариации обусловливает высокое значение ошибки и наоборот. Определим объем выборки на основе расчета доверительного интервала. Исходной информацией, необходимой для реализации данного подхода, является: · величина вариации, которой, как считается, обладает совокупность; · желаемая точность; · уровень достоверности, которому должны удовлетворять результаты проводимого обследования. Когда на заданный вопрос существует только два варианта ответов, выраженных в процентах (используется процентная мера), объем выборки определяется по следующей формуле: , где n – объем выборки; z – нормированное отклонение, определяемое исходя из выбранного уровня доверительности (табл. 7); р – найденная вариация для выборки; q = (100 – p); е – допустимая ошибка.
Таблица 7 Значение нормированного отклонения оценки z от среднего значения в зависимости от доверительной вероятности (а) полученного результата
Например, предприятием, выпускающим покрышки, проводится опрос автолюбителей, использующих радиальные покрышки. Поэтому на вопрос: «Используете ли Вы радиальные покрышки?» возможны только 2 ответа: «Да» или «Нет». Если предположить, что совокупность автолюбителей обладает низким показателем вариации, то это означает, что почти каждый опрошенный использует радиальные покрышки. В данном случае может быть сформирована выборка достаточно малых размеров. В формуле (1) произведение pg выражает вариацию, свойственную совокупности. Например, пусть 90 % единиц совокупности используют радиальные покрышки. Это означает, что pg = 900. Если принять, что показатель вариации выше (р = 70 %), то pg = 2100. Наибольшая вариация достигается в случае, когда одна половина совокупности (50 %) использует радиальные покрышки, а другие не используют. В этом случае произведение достигает значения равного 2500. При проведении опроса важно указывать точность полученных оценок. Например, было установлено, что 44 % респондентов используют радиальные покрышки. Результаты измерения необходимо представить в виде: процент автолюбителей, использующих радиальные покрышки, составляет 44 плюс – минус е %. Величина допустимой ошибки заранее совместно определяется заказчиком исследования и исполнителем. Уровень достоверности при проведении маркетинговых исследований обычно оценивается с учетом двух его значений: 95% или 99%. Первому значению соответствует значение z = 1,96; второму – z = 2,58. Если выбирается уровень доверительности равный 99 %, то это говорит о следующем: мы уверены на 99 % (иными словами доверительная вероятность равна 0,99) в том, что процент членов совокупности, попавший в диапазон плюс – минус е %, равен проценту членов выборки, попавших в тот же диапазон ошибки. Принимая вариацию равной 50 %, точность равной 10 % при 95 %-м уровне доверительности рассчитаем размер выборки: n = 1,962 (50 х 50) / 102 = 96. При уровне доверительности равном 99 %, и е = ±3 %, n = 1067. При определении показателя вариации для конкретной совокупности целесообразно проводить предварительно качественный анализ исследуемой совокупности и установить схожесть единиц совокупности в демографическом, социальном и других отношениях, представляющих интерес для исследователя. Возможно определение объема выборки на основе использования средних значений, а не процентных величин. Предположим, что выбран уровень достоверности равный 95 % (z = 1.96,), среднеквадратическое отклонение (S) рассчитано и равно 100, и желаемая точность (погрешность) составляет ±10. Тогда объем выборки составит
Реально на практике, если выборка формируется заново и схожие опросы не проводились, S неизвестно. В этом случае целесообразно задавать погрешность е в долях от среднеквадратического отклонения. Расчетная формула преобразуется и приобретает следующий вид: Мы в основном говорили о совокупности очень больших размеров, характерных для рынков потребительских товаров. Но в отдельных случаях совокупности не являются столь большим, и например на рынках отдельных видов продукции производственного назначения. Обычно, если выборка составляет менее 5 % совокупности, то совокупность считается большой, и расчеты проводятся по вышеприведенным правилам. Если же V выборки превышает 5 % совокупности, то последняя считается малой, и в вышеприведенные формулы вводится поправочный коэффициент. Объем выборки в данном случае определяется следующим образом: , где n1 – объем выборки для малой совокупности, n – объем выборки (или для процентных мер или для средних), рассчитанный по приведенным выше формулам, N – объем генеральной совокупности. Например, изучается мнение членов совокупности, состоящей из 1000 компаний, относительно строительства химического комбината в границах города Томска. Вследствие отсутствия информации о вариации принимается наихудший случай: 50:50. Исследователь вынес решение использовать уровень доверительности равный 95 %. Заказчик исследования указал, что его устроит точность результатов плюс минус 5 %. В этом случае используется следующая формула для процентной меры:
Данный подход к формированию V выборки с определенными оговорками может быть использован и при расчете численности панели и экспертной группы. Приведенные формулы расчета выборки основаны на предположении, что все правила формирования выборки были соблюдены, и единственной ошибкой является ошибка, обусловленная ее объемом.
билет №_4_
|
||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-08-10; просмотров: 548; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.226.17.210 (0.007 с.) |