Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Принципы фон неймана построения архитектуры компьютеров. Поколения эвм.↑ Стр 1 из 28Следующая ⇒ Содержание книги
Поиск на нашем сайте
Принципы фон Неймана построения архитектуры компьютеров. Поколения ЭВМ. Аксиоматика Колмогорова. Вероятность и условная вероятность. Независимые события и случайные величины. Чувствительность и специфичность. Относительный риск. Вероятность и условная вероятность. Аксиоматика Колмогорова. Независимые события и случайные величины. Чувствительность и специфичность. Относительный риск. Классическое определение Классическое «определение» вероятности исходит из понятия равновозможности как объективного свойства изучаемых явлений. Равновозможность является неопределяемым понятием и устанавливается из общих соображений симметрии изучаемых явлений. Например, при подбрасывании монетки исходят из того, что в силу предполагаемой симметрии монетки, однородности материала и случайности (непредвзятости) подбрасывания нет никаких оснований для предпочтения «решки» перед «орлом» или наоборот, то есть выпадение этих сторон можно считать равновозможными (равновероятными). Наряду с понятием равновозможности в общем случае для классического определения необходимо также понятие элементарного события (исхода), благоприятствующего или нет изучаемому событию A. Речь идет об исходах, наступление которых исключает возможность наступления иных исходов. Это несовместимые элементарные события. К примеру при бросании игральной кости выпадение конкретного числа исключает выпадение остальных чисел. Классическое определение вероятности можно сформулировать следующим образом: Вероятностью случайного события A называется отношение числа n несовместимых равновероятных элементарных событий, составляющих событие A, к числу всех возможных элементарных событий N: Например, пусть подбрасываются две кости. Общее количество равновозможных исходов (элементарных событий) равно 36 (так как на каждый из 6 возможных исходов одной кости возможно по 6 вариантов исхода другой). Оценим вероятность выпадения семи очков. Получить 7 очков можно лишь при следующих сочетаниях исходов броска двух костей: 1+6, 2+5, 3+4, 4+3, 5+2, 6+1. То есть всего 6 равновозможных исходов, благоприятствующих получению 7 очков, из 36 возможных исходов броска костей. Следовательно, вероятность будет равна 6/36 или, если сократить, 1/6. Для сравнения: вероятность получения 12 очков или 2 очков равна всего 1/36 — в 6 раз меньше. Геометрическое определение Несмотря на то, что классическое определение является интуитивно понятным и выведенным из практики, оно, как минимум, не может быть непосредственно применено в случае, если количество равновозможных исходов бесконечно. Ярким примером бесконечного числа возможных исходов является ограниченная геометрическая область G, например, на плоскости, с площадью S. Случайно «подброшенная» «точка» с равной вероятностью может оказаться в любой точке этой области. Задача заключается в определении вероятности попадания точки в некоторую подобласть g с площадью s. В таком случае, обобщая классическое определение, можно прийти к геометрическому определению вероятности попадания в подобласть : В виду равновозможности вероятность эта не зависит от формы области g, она зависит только от её площади. Данное определение естественно можно обобщить и на пространство любой размерности, где вместо площади использовать понятие «объёма». Более того, именно такое определение приводит к современному аксиоматическому определению вероятности. Понятие объёма обобщается до понятия меры некоторого абстрактного множества, к которой предъявляются требования, которыми обладает и «объём» в геометрической интерпретации — в первую очередь, это неотрицательность и аддитивность. Частотное (статистическое) определение Классическое определение при рассмотрении сложных проблем наталкивается на трудности непреодолимого характера. В частности, в некоторых случаях выявить равновозможные случаи может быть невозможно. Даже в случае с монеткой, как известно, существует явно не равновероятная возможность выпадения «ребра», которую из теоретических соображений оценить невозможно (можно только сказать, что оно маловероятно и то это соображение скорее практическое). Поэтому еще на заре становления теории вероятностей было предложено альтернативное «частотное» определение вероятности. А именно, формально вероятность можно определить как предел частоты наблюдений события A, предполагая однородность наблюдений (то есть одинаковость всех условий наблюдения) и их независимость друг от друга: где — количество наблюдений, а — количество наступлений события . Несмотря на то, что данное определение скорее указывает на способ оценки неизвестной вероятности — путем большого количества однородных и независимых наблюдений — тем не менее в таком определении отражено содержание понятия вероятности. А именно, если событию приписывается некоторая вероятность, как объективная мера его возможности, то это означает, что при фиксированных условиях и многократном повторении мы должны получить частоту его появления, близкую к (тем более близкую, чем больше наблюдений). Собственно, в этом заключается исходный смысл понятия вероятности. В основе лежит объективистский взгляд на явления природы. Ниже будут рассмотрены так называемые законы больших чисел, которые дают теоретическую основу (в рамках излагаемого ниже современного аксиоматического подхода) в том числе для частотной оценки вероятности. Аксиоматическое определение В современном математическом подходе вероятность задаётся аксиоматикой Колмогорова. Предполагается, что задано некоторое пространство элементарных событий . Подмножества этого пространства интерпретируются как случайные события. Объединение (сумма) некоторых подмножеств (событий) интерпретируется как событие, заключающееся в наступлении хотя бы одного из этих событий. Пересечение (произведение) подмножеств (событий) интерпретируется как событие, заключающееся в наступлении всех этих событий. Непересекающиеся множества интерпретируются как несовместные события (их совместное наступление невозможно). Соответственно, пустое множество означает невозможное событие. Вероятностью (вероятностной мерой) называется мера (числовая функция) , заданная на множестве событий, обладающая следующими свойствами:
В случае если пространство элементарных событий X конечно, то достаточно указанного условия аддитивности для произвольных двух несовместных событий, из которого будет следовать аддитивность для любого конечного количества несовместных событий. Однако, в случае бесконечного (счётного или несчётного) пространства элементарных событий этого условия оказывается недостаточно. Требуется так называемая счётная или сигма-аддитивность, то есть выполнение свойства аддитивности для любого не более чем счётного семейства попарно несовместных событий. Это необходимо для обеспечения «непрерывности» вероятностной меры. Вероятностная мера может быть определена не для всех подмножеств множества . Предполагается, что она определена на некоторой сигма-алгебре подмножеств [6]. Эти подмножества называются измеримыми по данной вероятностной мере и именно они являются случайными событиями. Совокупность — то есть множество элементарных событий, сигма-алгебра его подмножеств и вероятностная мера — называется вероятностным пространством. Свойства вероятности Основные свойства вероятности проще всего определить, исходя из аксиоматического определения вероятности. 1) вероятность невозможного события (пустого множества ) равна нулю: Это следует из того, что каждое событие можно представить как сумму этого события и невозможного события, что в силу аддитивности и конечности вероятностной меры означает, что вероятность невозможного события должна быть равна нулю. 2) если событие A включается («входит») в событие B, то есть , то есть наступление события A влечёт также наступление события B, то: Это следует из неотрицательности и аддитивности вероятностной меры, так как событие , возможно, «содержит» кроме события ещё какие-то другие события, несовместные с . 3) вероятность каждого события находится от 0 до 1, то есть удовлетворяет неравенствам: Первая часть неравенства (неотрицательность) утверждается аксиоматически, а вторая следует из предыдущего свойства с учётом того, что любое событие «входит» в , а для аксиоматически предполагается . 4) вероятность наступления события , где , заключающегося в наступлении события при одновременном ненаступлении события , равна: Это следует из аддитивности вероятности для несовместных событий и из того, что события и являются несовместными по условию, а их сумма равна событию . 5) вероятность события , противоположного событию , равна: Это следует из предыдущего свойства, если в качестве множества использовать всё пространство и учесть, что . 6) (теорема сложения вероятностей) вероятность наступления хотя бы одного из (то есть суммы) произвольных (не обязательно несовместных) двух событий и равна: Это свойство можно получить, если представить объединение двух произвольных множеств как объединение двух непересекающихся — первого и разности между вторым и пересечением исходных множеств: . Отсюда учитывая аддитивность вероятности для непересекающихся множеств и формулу для вероятности разности (см. свойство 4) множеств, получаем требуемое свойство. Условная вероятность Формула Байеса Вероятность наступления события , при условии наступления события , называется условной вероятностью (при данном условии) и обозначается . Наиболее просто вывести формулу определения условной вероятности исходя из классического определения вероятности. Для данных двух событий и рассмотрим следующий набор несовместных событий: , которые исчерпывают все возможные варианты исходов (такой набор событий называют полным — см. ниже). Общее количество равновозможных исходов равно . Если событие уже наступило, то равновозможные исходы ограничивается лишь двумя событиями , что эквивалентно событию . Пусть количество этих исходов равно . Из этих исходов событию благоприятствуют лишь те, что связаны с событием . Количество соответствующих исходов обозначим . Тогда согласно классическому определению вероятности вероятность события при условии наступления события будет равна , разделив числитель и знаменатель на общее количество равновозможных исходов и повторно учитывая классическое определение, окончательно получим формулу условной вероятности: . Отсюда следует так называемая теорема умножения вероятностей: . В силу симметрии, аналогично можно показать, что также , отсюда следует формула Байеса: Независимость событий События A и B называются независимыми, если вероятность наступления одного из них не зависит от того, наступило ли другое событие. С учетом понятия условной вероятности это означает, что , откуда следует, что для независимых событий выполняется равенство В рамках аксиоматического подхода данная формула принимается как определение понятия независимости двух событий. Для произвольной (конечной) совокупности событий их независимость в совокупности означает, что вероятность их совместного наступления равна произведению их вероятностей: Выведенная (в рамках классического определения вероятности) выше формула условной вероятности при аксиоматическом определении вероятности является определением условной вероятности. Соответственно, как следствие определений независимых событий и условной вероятности, получается равенство условной и безусловной вероятностей события. Пример расчета показателя относительного риска В 1999 году в Оклахоме проводились исследования заболеваемости мужчин язвой желудка. В качестве влияющего фактора было выбрано регулярное потребление фастфуда. В первой группе находились 500 мужчин, постоянно питающихся быстрой пищей, среди которых язву желудка диагностировали у 96 человек. Во вторую группу были отобраны 500 сторонников здорового питания, среди которых язва желудка была диагностирована в 31 случае. Исходя из полученных данных была построена следующая таблица сопряженности:
1. Рассчитываем значение относительного риска: 2. Находим значения верхней и нижней границ 95% доверительного интервала по указанным выше формулам. Значение верхней границы составляет 4.55, нижней - 2.11. 3. Сравниваем полученные значения ОР и 95% ДИ с 1. Показатель относительного риска свидетельствует о наличии прямой связи между употреблением фастфуда и вероятностью развития язвы желудка. У мужчин, употребляющих картошку фри и хотдоги, язва желудка наблюдается в 3,1 раза чаще, чем среди придерживающихся здорового питания. Уровень значимости данной взаимосвязи соответствует p<0.05, так как 95% ДИ не включает в себя единицу. билет №_2_ Определение Случайная величина имеет распределение Бернулли, если она принимает всего два значения: и с вероятностями и соответственно. Таким образом: , . Принято говорить, что событие соответствует «успеху», а событие — «неудаче». Эти названия условные, и в зависимости от конкретной задачи могут быть заменены на противоположные.
Биномиа́льное распределе́ние в теории вероятностей — распределение количества «успехов» в последовательности из независимых случайных экспериментов, таких, что вероятность «успеха» в каждом из них постоянна и равна . Определение Пусть — конечная последовательность независимых случайных величин, имеющих одинаковое распределение Бернулли с параметром , то есть при каждом величина принимает значения («успех») и («неудача») с вероятностями и соответственно. Тогда случайная величина имеет биномиальное распределение с параметрами и . Это записывается в виде: . Случайную величину обычно интерпретируют как число успехов в серии из одинаковых независимых испытаний Бернулли с вероятностью успеха в каждом испытании. Функция вероятности задаётся формулой: где
— биномиальный коэффициент. Функция распределения Функция распределения биномиального распределения может быть записана в виде суммы: , где обозначает наибольшее целое, не превосходящее число , или в виде неполной бета-функции: . Моменты Производящая функция моментов биномиального распределения имеет вид: , откуда , , а дисперсия случайной величины. . Определение Выберем фиксированное число и определим дискретное распределение, задаваемое следующей функцией вероятности: , где
Тот факт, что случайная величина имеет распределение Пуассона с параметром , записывается: . Моменты Производящая функция моментов распределения Пуассона имеет вид: , откуда , . Для факториальных моментов распределения справедлива общая формула: , где А так как моменты и факториальные моменты линейным образом связаны, то часто для пуассоновского распределения исследуются именно факториальные моменты, из которых при необходимости можно вывести и обычные моменты. Виды представления информации (неформатированные тексты, гипертексты и т.д.), форматы файлов, в которых они хранятся, и программы, которые с ними работают. Векторная и растровая графика. Популярные форматы графических файлов. Проверка гипотезы Проверка гипотезы (задающей вероятностное распределение ) состоит в следующем. Выбирается событие (называемое статистическим критерием), которое (по каким-либо соображениям) «почти несовместимо» с гипотезой в том смысле, что вероятность события не превышает какого-то малого (по сравнению с единицей) числа , называемого уровнем значимости: . Затем проводится опыт. Если событие происходит, то гипотеза отвергается (говорят, что наблюдается отклонение от гипотезы на уровне значимости ). В противном случае, гипотеза не отвергается (однако никакой метод статистики, ни даже науки в целом, не может «окончательно доказать» гипотезу). Таким образом, уровень значимости теста — вероятность отклонить гипотезу , если на самом деле она верна (решение известное как ошибка первого рода, или ложноположительное решение). Популярными уровнями значимости являются 10 %, 5 %, 1 %, и 0,1 %. Различные значения α-уровня имеют свои достоинства и недостатки. Меньшие α-уровни дают бо́льшую уверенность в том, что уже установленная альтернативная гипотеза значима, но при этом есть больший риск не отвергнуть ложную нулевую гипотезу (ошибка второго рода, или «ложноотрицательное решение»), и таким образом меньшая статистическая мощность. Выбор α-уровня неизбежно требует компромисса между значимостью и мощностью, и следовательно между вероятностями ошибок первого и второго рода.
Определения Пусть в (статистическом) эксперименте доступна наблюдению случайная величина , распределение которой полностью или частично неизвестно. Тогда любое утверждение, относительно называется статистической гипотезой. Гипотезы различают по виду предположений, содержащихся в них:
На практике обычно требуется проверить какую-то конкретную и как правило простую гипотезу . Такую гипотезу принято называть нулевой. При этом параллельно рассматривается противоречащая ей гипотеза , называемая конкурирующей или альтернативной. Выдвинутая гипотеза нуждается в проверке, которая осуществляется статистическими методами, поэтому гипотезу называют статистической. Для проверки гипотезы используют критерии, позволяющие принять или опровергнуть гипотезу. В большинстве случаев статистические критерии основаны на случайной выборке фиксированного объема для распределения . В последовательном анализе выборка формируется в ходе самого эксперимента и потому её размер является случайной величиной. Виды критической области Выделяют три вида критических областей:
Ошибки первого рода (англ. type I errors, α errors, false positives) и ошибки второго рода (англ. type II errors, β errors, false negatives) в математической статистике — это ключевые понятия задач проверки статистических гипотез. Тем не менее, данные понятия часто используются и в других областях, когда речь идёт о принятии «бинарного» решения (да/нет) на основе некоего критерия (теста, проверки, измерения), который с некоторой вероятностью может давать ложный результат. Определения Пусть дана выборка из неизвестного совместного распределения , и поставлена бинарная задача проверки статистических гипотез: где — нулевая гипотеза, а — альтернативная гипотеза. Предположим, что задан статистический критерий , сопоставляющий каждой реализации выборки одну из имеющихся гипотез. Тогда возможны следующие четыре ситуации:
Во втором и четвертом случае говорят, что произошла статистическая ошибка, и её называют ошибкой первого и второго рода соответственно.
Определение Доверительным интервалом параметра распределения случайной величины с уровнем доверия p [примечание 1], порождённым выборкой , называется интервал с границами и , которые являются реализациями случайных величин и , таких, что . Граничные точки доверительного интервала и называются доверительными пределами. Толкование доверительного интервала, основанное на интуиции, будет следующим: если уровень доверия p велик (скажем, 0,95 или 0,99), то доверительный интервал почти наверняка содержит истинное значение . Еще одно истолкование понятию доверительного интервала: его можно рассматривать как интервал значений параметра , совместимых с опытными данными и не противоречащих им. Более точное, хоть также не совсем строгое, толкование доверительного интервала с уровнем доверия, скажем, 95% состоит в следующем. Если провести очень большое количество независимых экспериментов с аналогичным построением доверительного интервала, то в 95% экспериментов доверительный интервал будет содержать оцениваемый параметр (то есть будет выполняться ), а в оставшихся 5% экспериментов доверительный интервал не будет содержать . Примеры использования Массовая медицинская диагностика (скрининг) В медицинской практике есть существенное различие между скринингом и тестированием:
К примеру, в большинстве штатов в США обязательно прохождение новорожденными процедуры скрининга на оксифенилкетонурию и гипотиреоз, помимо других врождённых аномалий. Несмотря на высокий уровень ошибок первого рода, эти процедуры скрининга считаются целесообразными, поскольку они существенно увеличивают вероятность обнаружения этих расстройств на самой ранней стадии. [4] Простые анализы крови, используемые для скрининга потенциальных доноров на ВИЧ и гепатит, имеют существенный уровень ошибок первого рода; однако в арсенале врачей есть гораздо более точные (и, соответственно, дорогие) тесты для проверки, действительно ли человек инфицирован каким-либо из этих вирусов. Возможно, наиболее широкие дискуссии вызывают ошибки первого рода в процедурах скрининга на рак груди (маммография). В США уровень ошибок первого рода в маммограммах достигает 15%, это самый высокий показатель в мире. [5] Самый низкий уровень наблюдается в Нидерландах, 1%. [6] Медицинское тестирование Ошибки в |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-08-10; просмотров: 629; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.109.159 (0.013 с.) |