Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Вероятности ошибок (уровень значимости и мощность критерия.)

Поиск

Вероятность ошибки первого рода при проверке статистических гипотез называют уровнем значимости и обычно обозначают греческой буквой (отсюда название -errors).

Вероятность ошибки второго рода не имеет какого-то особого общепринятого названия, на письме обозначается греческой буквой (отсюда -errors). Однако с этой величиной тесно связана другая, имеющая большое статистическое значение — мощность критерия. Она вычисляется по формуле . Таким образом, чем выше мощность, тем меньше вероятность совершить ошибку второго рода.

Обе эти характеристики обычно вычисляются с помощью так называемой функции мощности критерия. В частности, вероятность ошибки первого рода есть функция мощности, вычисленная при нулевой гипотезе. Для критериев, основанных на выборке фиксированного объема, вероятность ошибки второго рода есть единица минус функция мощности, вычисленная в предположении, что распределение наблюдений соответствует альтернативной гипотезе. Для последовательных критериев это также верно, если критерий останавливается с вероятностью единица (при данном распределении из альтернативы).

В статистических тестах обычно приходится идти на компромисс между приемлемым уровнем ошибок первого и второго рода. Зачастую для принятия решения используется пороговое значение, которое может варьироваться с целью сделать тест более строгим или, наоборот, более мягким. Этим пороговым значением является уровень значимости, которым задаются при проверке статистических гипотез. Например, в случае металлодетектора повышение чувствительности прибора приведёт к увеличению риска ошибки первого рода (ложная тревога), а понижение чувствительности — к увеличению риска ошибки второго рода (пропуск запрещённого предмета).

Примеры использования

Массовая медицинская диагностика (скрининг)

В медицинской практике есть существенное различие между скринингом и тестированием:

  • Скрининг включает в себя относительно дешёвые тесты, которые проводятся для большой группы людей при отсутствии каких-либо клинических признаков болезни (например, мазок Папаниколау).
  • Тестирование подразумевает гораздо более дорогие, зачастую инвазивные, процедуры, которые проводятся только для тех, у кого проявляются клинические признаки заболевания, и которые, в основном, применяются для подтверждения предполагаемого диагноза.

К примеру, в большинстве штатов в США обязательно прохождение новорожденными процедуры скрининга на оксифенилкетонурию и гипотиреоз, помимо других врождённых аномалий. Несмотря на высокий уровень ошибок первого рода, эти процедуры скрининга считаются целесообразными, поскольку они существенно увеличивают вероятность обнаружения этих расстройств на самой ранней стадии. [4]

Простые анализы крови, используемые для скрининга потенциальных доноров на ВИЧ и гепатит, имеют существенный уровень ошибок первого рода; однако в арсенале врачей есть гораздо более точные (и, соответственно, дорогие) тесты для проверки, действительно ли человек инфицирован каким-либо из этих вирусов.

Возможно, наиболее широкие дискуссии вызывают ошибки первого рода в процедурах скрининга на рак груди (маммография). В США уровень ошибок первого рода в маммограммах достигает 15%, это самый высокий показатель в мире. [5] Самый низкий уровень наблюдается в Нидерландах, 1%. [6]

Медицинское тестирование

Ошибки второго рода являются существенной проблемой в медицинском тестировании. Они дают пациенту и врачу ложное убеждение, что заболевание отсутствует, в то время как в действительности оно есть. Это зачастую приводит к неуместному или неадекватному лечению. Типичным примером является доверие результатам кардиотестирования при выявлении коронарного атеросклероза, хотя известно, что кардиотестирование выявляет только те затруднения кровотока в коронарной артерии, которые вызваны стенозом.

Ошибки второго рода вызывают серьёзные и трудные для понимания проблемы, особенно когда искомое условие является широкораспространённым. Если тест с 10%-ным уровнем ошибок второго рода используется для обследования группы, где вероятность «истинно-положительных» случаев составляет 70%, то многие отрицательные результаты теста окажутся ложными. Ошибки первого рода также могут вызывать серьёзные и трудные для понимания проблемы. Это происходит, когда искомое условие является редким. Если уровень ошибок первого рода у теста составляет один случай на десять тысяч, но в тестируемой группе образцов (или людей) вероятность «истинно-положительных» случаев составляет в среднем один случай на миллион, то большинство положительных результатов этого теста будут ложными.

Статистический критерий — строгое математическое правило, по которому принимается или отвергается та или иная статистическая гипотеза с известным уровнем значимости. Построение критерия представляет собой выбор подходящей функции от результатов наблюдений (ряда эмпирически полученных значений признака), которая служит для выявления меры расхождения между эмпирическими значениями и гипотетическими.

Виды критериев

Статистические критерии подразделяются на следующие категории:

  • Критерии значимости. Проверка на значимость предполагает проверку гипотезы о численных значениях известного закона распределения: нулевая гипотеза. или — конкурирующая гипотеза.
  • Критерии согласия. Проверка на согласие подразумевает проверку предположения о том, что исследуемая случайная величина подчиняется предполагаемому закону. Критерии согласия можно также воспринимать, как критерии значимости. Критериями согласия являются:
  1. Критерий Пирсона
  2. Критерий Колмогорова
  3. Критерий Андерсона-Дарлинга
  4. Критерий Крамера — Мизеса — Смирнова
  5. Критерий согласия Купера
  6. Z-тест
  7. Критерий Жака-Бера (англ.)
  8. Критерий Шапиро-Уилка (англ.)
  9. График нормальности (англ.) — не столько критерий, сколько графическая иллюстрация: точки специально построенного графика должны лежать почти на одной прямой.
  • Критерии проверки на однородность. При проверке на однородность случайные величины исследуются на факт значимости различия их законов распределения (т.е. проверки того, подчиняются ли эти величины одному и тому же закону). Используются в факторном анализе для определения наличия зависимостей.

Это разделение условно, и зачастую один и тот же критерий может быть использован в разных качествах.

Непараметрические критерии

Группа статистических критериев, которые не включают в расчёт параметры вероятностного распределения и основаны на оперировании частотами или рангами.

  • Q-критерий Розенбаума
  • U-критерий Манна-Уитни
  • Критерий Уилкоксона
  • Критерий Пирсона
  • Критерий Колмогорова-Смирнова

Параметрические критерии

Группа статистических критериев, которые включают в расчет параметры вероятностного распределения признака (средние и дисперсии).

  • t-критерий Стьюдента
  • Критерий Фишера
  • Критерий отношения правдоподобия
  • Критерий Романовского

 

билет №_5_



Поделиться:


Последнее изменение этой страницы: 2016-08-10; просмотров: 943; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.116.24.148 (0.007 с.)