Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Назначение баз данных. Текстографические и фактографические базы данных. Реляционные базы данных. Транзакции, откаты транзакций.Содержание книги
Поиск на нашем сайте
Математические модели. Детерминированные и стохастические динамические модели. Критерии адекватности моделей. Математические модели. Детерминированные и стохастические динамические модели. Критерии адекватности моделей. Математи́ческая моде́ль — математическоепредставлениереальности, один из вариантов модели, как системы, исследование которой позволяет получать информацию о некоторой другой системе. Процесс построения и изучения математических моделей называется математическим моделированием. Все естественные и общественные науки, использующие математический аппарат, по сути занимаются математическим моделированием: заменяют объект исследования его математической моделью и затем изучают последнюю. Связь математической модели с реальностью осуществляется с помощью цепочки гипотез, идеализаций и упрощений. С помощью математических методов описывается, как правило, идеальный объект, построенный на этапе содержательного моделирования Определения Никакое определение не может в полном объёме охватить реально существующую деятельность по математическому моделированию. Несмотря на это, определения полезны тем, что в них делается попытка выделить наиболее существенные черты. По Ляпунову, математическое моделирование — это опосредованное практическое или теоретическое исследование объекта, при котором непосредственно изучается не сам интересующий нас объект, а некоторая вспомогательная искусственная или естественная система (модель), находящаяся в некотором объективном соответствии с познаваемым объектом, способная замещать его в определенных отношениях и дающая при её исследовании, в конечном счете, информацию о самом моделируемом объекте. В других вариантах, математическая модель определяется как объект-заместитель объекта-оригинала, обеспечивающий изучение некоторых свойств оригинал, как «„эквивалент“ объекта, отражающий в математической форме важнейшие его свойства — законы, которым он подчиняется, связи, присущие составляющим его частям», как систему уравнений, или арифметических соотношений, или геометрических фигур, или комбинацию того и другого, исследование которых средствами математики должно ответить на поставленные вопросы о свойствах некоторой совокупности свойств объекта реального мира, как совокупность математических соотношений, уравнений, неравенств, описывающих основные закономерности, присущие изучаемому процессу, объекту или системе [6]. Классификация моделей Формальная классификация моделей Формальная классификация моделей основывается на классификации используемых математических средств. Часто строится в форме дихотомий. Например, один из популярных наборов дихотомий:
и так далее. Каждая построенная модель является линейной или нелинейной, детерминированной или стохастической, … Естественно, что возможны и смешанные типы: в одном отношении сосредоточенные (по части параметров), в другом — распределённые модели и т. д. Динамическая модель — теоретическая конструкция (модель), описывающая изменение (динамику) состояний объекта. Динамическая модель может включать в себя описание этапов или фаз или диаграмму состояний подсистем. Часто имеет математическое выражение и используется главным образом в общественных науках (например, в социологии), имеющих дело с динамическими системами, однако современная парадигма науки способствует тому, что данная модель также имеет широкое распространение во всех без исключения науках, в том числе в естественных и технических. Динамическая модель описывает систему с различными аккумуляторами энергии, представляемыми в форме математических операций суммирования, интегрирования и дифференцирования. Например, потенциальная и кинетическая энергия механического движения массивного объекта. Такие модели в теории автоматического управления строятся в виде передаточных функций. Математическая модель, в которой в той или иной форме раскрываются причинно-следственные связи, определяющие процесс перехода системы из одного состояния в другое, называется динамической моделью. Характеристики вероятностных (иными словами, стохастических) моделей случайным образом распределяются в пространстве или меняются во времени. Это является следствием как случайного распределения свойств материалов, геометрических размеров и форм объекта, так и случайного характера воздействия внешних нагрузок и условий. Характеристики детерминированных моделей заранее известны и точно предсказуемы. Адекватность модели — совпадение свойств (функций/параметров/характеристик и т. п.) модели и соответствующих свойств моделируемого объекта. Адекватностью называется совпадение модели моделируемой системы в отношении цели моделирования. Оценка адекватности модели — проверка соответствия модели реальной системе. Оценка адекватности модели реальному объекту оценивается по близости результатов расчетов экспериментальным данным. Два основных подхода к оценке адекватности: 1) по средним значениям откликов модели и системы Проверяется гипотеза о близости средних значений каждой n-й компоненты откликов модели Yn известным средним значениям n-й компоненты откликов реальной систем. 2) по дисперсиям отклонений откликов модели от среднего значения откликов систем Сравнение дисперсии проводят с помощью критерия F (проверяют гипотезы о согласованности), с помощью критерия согласия?2 (при больших выборках, п>100), критерия Колмогорова- Смирнова (при малых выборках, известны средняя и дисперсия совокупности), Кохрена и др. Пример модели «Система хищник-жертва» Допустим, что на некоторой территории обитают два вида животных: кролики (питающиеся растениями) и лисы (питающиеся кроликами). Пусть число кроликов , число лис . Используя модель Мальтуса с необходимыми поправками, учитывающими поедание кроликов лисами, приходим к следующей системе, носящей имя модели Лотки — Вольтерры: Эта система имеет равновесное состояние, когда число кроликов и лис постоянно. Отклонение от этого состояния приводит к колебаниям численности кроликов и лис, аналогичным колебаниям гармонического осциллятора. Как и в случае гармонического осциллятора, это поведение не является структурно устойчивым: малое изменение модели (например, учитывающее ограниченность ресурсов, необходимых кроликам) может привести к качественному изменению поведения. Например, равновесное состояние может стать устойчивым, и колебания численности будут затухать. Возможна и противоположная ситуация, когда любое малое отклонение от положения равновесия приведет к катастрофическим последствиям, вплоть до полного вымирания одного из видов. На вопрос о том, какой из этих сценариев реализуется, модель Вольтерры — Лотки ответа не дает: здесь требуются дополнительные исследования.
билет №_18_
|
||||
Последнее изменение этой страницы: 2016-08-10; просмотров: 714; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.116.85.102 (0.008 с.) |