Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Интернет: возможности и технологии. Сетевые протоколы, web. Ip-адреса, url, html, теги, скрипты. Поисковые сервисы. Web 2. 0, блоги и социальные сети.

Поиск

Проверка статистических гипотез. Ошибки первого и второго рода. Доверительная вероятность и уровень статистической значимости р. Точные и асимптотические критерии.

 

Проверка статистических гипотез. Ошибки первого и второго рода. Доверительная вероятность и уровень статистической значимости р. Точные и асимптотические критерии.

Проверка статистических гипотез является содержанием одного из обширных классов задач математической статистики

Статистическая гипотеза — предположение о виде распределения и свойствах случайной величины, которое можно подтвердить или опровергнуть применением статистических методов к данным выборки

Определения

Пусть в (статистическом) эксперименте доступна наблюдению случайная величина , распределение которой полностью или частично неизвестно. Тогда любое утверждение, относительно называется статистической гипотезой. Гипотезы различают по виду предположений, содержащихся в них:

  • Статистическая гипотеза, однозначно определяющая распределение , то есть , где какой-то конкретный закон, называется простой.
  • Статистическая гипотеза, утверждающая принадлежность распределения к некоторому семейству распределений, то есть вида , где — семейство распределений, называется сложной.

На практике обычно требуется проверить какую-то конкретную и как правило простую гипотезу . Такую гипотезу принято называть нулевой. При этом параллельно рассматривается противоречащая ей гипотеза , называемая конкурирующей или альтернативной.

Выдвинутая гипотеза нуждается в проверке, которая осуществляется статистическими методами, поэтому гипотезу называют статистической. Для проверки гипотезы используют критерии, позволяющие принять или опровергнуть гипотезу.

В большинстве случаев статистические критерии основаны на случайной выборке фиксированного объема для распределения . В последовательном анализе выборка формируется в ходе самого эксперимента и потому её размер является случайной величиной.

Этапы проверки статистических гипотез

Формулировка основной гипотезы и конкурирующей гипотезы .

  1. Задание уровня значимости , на котором в дальнейшем и будет сделан вывод о справедливости гипотезы. Он равен вероятности допустить ошибку первого рода.
  2. Расчёт статистики критерия такой, что:
    • её величина зависит от исходной выборки ;
    • по её значению можно делать выводы об истинности гипотезы ;
    • статистика , как функция случайной величины , также является случайной величиной и подчиняться какому-то закону распределения.
  3. Построение критической области. Из области значений выделяется подмножество таких значений, по которым можно судить о существенных расхождениях с предположением. Его размер выбирается таким образом, чтобы выполнялось равенство . Это множество и называется критической областью.
  4. Вывод об истинности гипотезы. Наблюдаемые значения выборки подставляются в статистику и по попаданию (или непопаданию) в критическую область выносится решение об отвержении (или принятии) выдвинутой гипотезы .

Виды критической области

Выделяют три вида критических областей:

  • Двусторонняя критическая область определяется двумя интервалами , где находят из условий .
  • Левосторонняя критическая область определяется интервалом , где находят из условия .
  • Правосторонняя критическая область определяется интервалом , где находят из условия .

 

Ошибки первого рода (англ. type I errors, α errors, false positives) и ошибки второго рода (англ. type II errors, β errors, false negatives) в математической статистике — это ключевые понятия задач проверки статистических гипотез. Тем не менее, данные понятия часто используются и в других областях, когда речь идёт о принятии «бинарного» решения (да/нет) на основе некоего критерия (теста, проверки, измерения), который с некоторой вероятностью может давать ложный результат.

Определения

Пусть дана выборка из неизвестного совместного распределения , и поставлена бинарная задача проверки статистических гипотез:

где нулевая гипотеза, а альтернативная гипотеза. Предположим, что задан статистический критерий

,

сопоставляющий каждой реализации выборки одну из имеющихся гипотез. Тогда возможны следующие четыре ситуации:

  1. Распределение выборки соответствует гипотезе , и она точно определена статистическим критерием, то есть .
  2. Распределение выборки соответствует гипотезе , но она неверно отвергнута статистическим критерием, то есть .
  3. Распределение выборки соответствует гипотезе , и она точно определена статистическим критерием, то есть .
  4. Распределение выборки соответствует гипотезе , но она неверно отвергнута статистическим критерием, то есть .

Во втором и четвертом случае говорят, что произошла статистическая ошибка, и её называют ошибкой первого и второго рода соответственно.

  Верная гипотеза
Результат применения критерия верно принята неверно принята (Ошибка второго рода)
неверно отвергнута (Ошибка первого рода) верно отвергнута


Поделиться:


Последнее изменение этой страницы: 2016-08-10; просмотров: 399; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.15.228.162 (0.01 с.)