Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Момент инерции при параллельном переносе осейСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Оси, проходящие через центр тяжести плоской фигуры, называют центральными осями. Теорема Для доказательства этой теоремы рассмотрим произвольную плоскую фигуру, площадь которой равна А, центр тяжести расположен в точке С, а центральный момент инерции относительно оси x будет Ix. Ix1= Σ y12dA + Σ (y + a)2dA = Анализируя полученную формулу, отмечаем, что первое слагаемое - осевой момент инерции относительно центральной оси, второе слагаемое - статический момент площади этой фигуры относительно центральной оси (следовательно, он равен нулю), а третье слагаемое после интегрирования может быть представлено в виде произведения a2A, т. е. в результате получим формулу: Ix1= Ix+ а2А - теорема доказана. На основании теоремы можно сделать вывод, что из ряда параллельных осей осевой момент инерции плоской фигуры будет наименьшим относительно центральной оси. *** Главные оси и главные моменты инерции Представим себе плоскую фигуру, моменты инерции которой относительно осей координат Ix и Iy, а полярный момент инерции относительно начала координат равен Iρ. Как было установлено ранее, Ix+ Iy= Iρ. Если оси координат поворачивать в своей плоскости вокруг начала координат, то полярный момент инерции останется неизменным, а осевые моменты будут изменяться, при этом их сумма останется величиной постоянной. Поскольку сумма переменных величин постоянна, то одна из них уменьшается, а другая увеличивается, и наоборот. Оси, относительно которых моменты инерции имеют минимальное и максимальное значения, называют главными осями инерции. Если главная ось проходит через центр тяжести фигуры, она называется главной центральной осью, а момент инерции относительно такой оси - главным центральным моментом инерции. *** Центробежный момент инерции Центробежным моментом инерции плоской фигуры называют взятую по всей площади сумму произведений элементарных площадок на расстояние до двух взаимно перпендикулярных осей: Ixy= Σ xy dA, где x, y - расстояния от площадки dA до осей x и y. Центробежный момент инерции входит в формулы для определения положения главных осей несимметричных сечений. ix= √ (Ix/ A), iy= √ (Iy/ A), (здесь и далее знак "√" - знак корня) где Ix, Iy - осевые моменты инерции сечения относительно центральных осей; А - площадь сечения. Деформация кручения Основные понятия о кручении. Кручение круглого бруса. Кручением называют такой вид деформации, при котором в любом поперечном сечении бруса возникает только крутящий момент, т. е. силовой фактор, вызывающий круговое перемещение сечения относительно оси, перпендикулярной этому сечению, либо препятствующий такому перемещению. Другими словами - деформации кручения возникают, если к прямому брусу в плоскостях, перпендикулярных его оси приложить пару или пары сил. В машинах и механизмах кручению наиболее часто подвергаются круглые или трубчатые валы, поэтому расчеты на прочность и жесткость чаще всего производят для таких узлов и деталей. Рассмотрим кручение круглого цилиндрического вала. Из этого можно заключить, что при кручении круглого цилиндрического бруса (вала) справедлива гипотеза плоских сечений, а также предположить, что радиусы окружностей остаются при деформации прямыми (поскольку их диаметры не изменились). А поскольку в сечениях вала отсутствуют продольные силы, то расстояние между ними сохраняется. Следовательно, деформация кручения круглого вала заключается в повороте поперечных сечений относительно друг друга вокруг оси кручения, причем углы поворота их прямо пропорциональны расстояниям от закрепленного сечения - чем дальше от закрепленного конца вала находится какое-либо сечение, тем на больший угол относительно оси вала оно закручивается.
Угол (рис. 1) поворота свободного конца вала (концевого сечения) называется полным углом закручивания цилиндрического бруса (вала). Если мы рассмотрим тонкий слой на поверхности вышеупомянутого резинового цилиндрического бруса (рис. 1), ограниченный ячейкой сетки cdef, то заметим, что эта ячейка при деформации перекашивается, и ее сторона, удаленная от закрепленного сечения, смещается в сторону закручивания бруса, занимая положение cde1f1. Следует отметить, что аналогичная картина наблюдается при деформации сдвига, только в этом случае поверхность деформируется из-за поступательного перемещения сечений друг относительно друга, а не из-за вращательного перемещения, как при деформации кручения. На основании этого можно сделать вывод, что при кручении в поперечных сечениях возникают только касательные внутренние силы (напряжения), образующие крутящий момент. Итак, крутящий момент есть результирующий момент относительно оси бруса внутренних касательных сил, действующих в поперечном сечении.
|
||||
Последнее изменение этой страницы: 2016-04-18; просмотров: 2840; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.119.167.189 (0.009 с.) |