Момент инерции при параллельном переносе осей 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Момент инерции при параллельном переносе осей



Оси, проходящие через центр тяжести плоской фигуры, называют центральными осями.
Момент инерции относительно центральной оси называется центральным моментом инерции.

Теорема

Момент инерции относительно какой-либо оси равен сумме момента инерции относительно центральной оси, параллельной данной, и произведения площади фигуры на квадрат расстояния между осями.

Для доказательства этой теоремы рассмотрим произвольную плоскую фигуру, площадь которой равна А, центр тяжести расположен в точке С, а центральный момент инерции относительно оси x будет Ix.
Вычислим момент инерции фигуры относительно некоторой оси x1, параллельной центральной оси и отстоящей от нее на расстоянии а (рис).

Ix1= Σ y12dA + Σ (y + a)2dA =
= Σ y2dA + 2a Σ y dA + a2Σ dA
.

Анализируя полученную формулу, отмечаем, что первое слагаемое - осевой момент инерции относительно центральной оси, второе слагаемое - статический момент площади этой фигуры относительно центральной оси (следовательно, он равен нулю), а третье слагаемое после интегрирования может быть представлено в виде произведения a2A, т. е. в результате получим формулу:

Ix1= Ix+ а2А - теорема доказана.

На основании теоремы можно сделать вывод, что из ряда параллельных осей осевой момент инерции плоской фигуры будет наименьшим относительно центральной оси.

***

Главные оси и главные моменты инерции

Представим себе плоскую фигуру, моменты инерции которой относительно осей координат Ix и Iy, а полярный момент инерции относительно начала координат равен Iρ. Как было установлено ранее,

Ix+ Iy= Iρ.

Если оси координат поворачивать в своей плоскости вокруг начала координат, то полярный момент инерции останется неизменным, а осевые моменты будут изменяться, при этом их сумма останется величиной постоянной. Поскольку сумма переменных величин постоянна, то одна из них уменьшается, а другая увеличивается, и наоборот.
Следовательно, при определенном положении осей один из осевых моментов достигнет максимального значения, а другой - минимального.

Оси, относительно которых моменты инерции имеют минимальное и максимальное значения, называют главными осями инерции.
Момент инерции относительно главной оси называется главным моментом инерции.

Если главная ось проходит через центр тяжести фигуры, она называется главной центральной осью, а момент инерции относительно такой оси - главным центральным моментом инерции.
Можно сделать вывод, что если фигура симметрична относительно какой-нибудь оси, то эта ось всегда будет одной из главных центральных осей инерции этой фигуры.

***

Центробежный момент инерции

Центробежным моментом инерции плоской фигуры называют взятую по всей площади сумму произведений элементарных площадок на расстояние до двух взаимно перпендикулярных осей:

Ixy= Σ xy dA,

где x, y - расстояния от площадки dA до осей x и y.
Центробежный момент инерции может быть положительным, отрицательным и равным нулю.

Центробежный момент инерции входит в формулы для определения положения главных осей несимметричных сечений.
В таблицах стандартных профилей содержится характеристика, которая называется радиусом инерции сечения, вычисляемая по формулам:

ix= √ (Ix/ A), iy= √ (Iy/ A), (здесь и далее знак "√" - знак корня)

где Ix, Iy - осевые моменты инерции сечения относительно центральных осей; А - площадь сечения.
Эта геометрическая характеристика используется при изучении внецентрального растяжения или сжатия, а также продольного изгиба.

Деформация кручения



Основные понятия о кручении. Кручение круглого бруса.

Кручением называют такой вид деформации, при котором в любом поперечном сечении бруса возникает только крутящий момент, т. е. силовой фактор, вызывающий круговое перемещение сечения относительно оси, перпендикулярной этому сечению, либо препятствующий такому перемещению. Другими словами - деформации кручения возникают, если к прямому брусу в плоскостях, перпендикулярных его оси приложить пару или пары сил.
Моменты этих пар сил называют скручивающими или вращающими. Вращающий момент обозначают Т.
Такое определение условно разделяет силовые факторы деформации кручения на внешние (скручивающие, вращающие моменты Т) и внутренние (крутящие моменты Мкр).

В машинах и механизмах кручению наиболее часто подвергаются круглые или трубчатые валы, поэтому расчеты на прочность и жесткость чаще всего производят для таких узлов и деталей.

Рассмотрим кручение круглого цилиндрического вала.
Представьте резиновый цилиндрический вал у которого жестко закреплен один из концов, а на поверхности нанесена сетка из продольных линий и поперечных окружностей. К свободному концу вала приложим пару сил, перпендикулярно оси этого вала, т. е. закрутим его вдоль оси. Если внимательно рассмотреть линии сетки на поверхности вала, то можно заметить, что:
- ось вала, которую называют осью кручения, останется прямолинейной;
- диаметры окружностей останутся такими же, а расстояние между соседними окружностями не изменится;
- продольные линии на валу обратятся в винтовые линии.

Из этого можно заключить, что при кручении круглого цилиндрического бруса (вала) справедлива гипотеза плоских сечений, а также предположить, что радиусы окружностей остаются при деформации прямыми (поскольку их диаметры не изменились). А поскольку в сечениях вала отсутствуют продольные силы, то расстояние между ними сохраняется.

Следовательно, деформация кручения круглого вала заключается в повороте поперечных сечений относительно друг друга вокруг оси кручения, причем углы поворота их прямо пропорциональны расстояниям от закрепленного сечения - чем дальше от закрепленного конца вала находится какое-либо сечение, тем на больший угол относительно оси вала оно закручивается.
Для каждого сечения вала угол поворота равен углу закручивания части вала, заключенного между этим сечением и заделкой (закрепленным концом).




Угол (рис. 1) поворота свободного конца вала (концевого сечения) называется полным углом закручивания цилиндрического бруса (вала).
Относительным углом закручивания φ0 называется отношение угла закручивания φ1 к расстоянию l1 от данного сечения до заделки (закрепленного сечения).
Если цилиндрический брус (вал) длиной l имеет постоянное сечение и нагружен скручивающим моментом на свободном конце (т. е. состоит из однородного геометрического участка), то справедливо утверждение:
φ0= φ1/ l1= φ / l = const - величина постоянная.

Если мы рассмотрим тонкий слой на поверхности вышеупомянутого резинового цилиндрического бруса (рис. 1), ограниченный ячейкой сетки cdef, то заметим, что эта ячейка при деформации перекашивается, и ее сторона, удаленная от закрепленного сечения, смещается в сторону закручивания бруса, занимая положение cde1f1.

Следует отметить, что аналогичная картина наблюдается при деформации сдвига, только в этом случае поверхность деформируется из-за поступательного перемещения сечений друг относительно друга, а не из-за вращательного перемещения, как при деформации кручения. На основании этого можно сделать вывод, что при кручении в поперечных сечениях возникают только касательные внутренние силы (напряжения), образующие крутящий момент.

Итак, крутящий момент есть результирующий момент относительно оси бруса внутренних касательных сил, действующих в поперечном сечении.

 

 



Поделиться:


Последнее изменение этой страницы: 2016-04-18; просмотров: 2782; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.141.244.201 (0.006 с.)